首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   10篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1974年   3篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
71.
72.
73.
Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.  相似文献   
74.
Physiology and Molecular Biology of Plants - Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this...  相似文献   
75.
76.

Background

The protein S4 of the smaller ribosomal subunit is centrally important for its anchorage role in ribosome assembly and rRNA binding. Eubacterial S4 also facilitates synthesis of rRNA, and restrains translation of ribosomal proteins of the same polycistronic mRNA. Eukaryotic S4 has no homolog in eubacterial kingdom, nor are such extraribosomal functions of S4 known in plants and animals even as genetic evidence suggests that deficiency of S4X isoform in 46,XX human females may produce Turner syndrome (45,XO).

Methods

Recombinant human S4X and rice S4 were used to determine their enzymatic action in the cleavage of synthetic peptide substrates and natural proteins. We also studied autoproteolysis of the recombinant S4 proteins, and examined the growth and proliferation of S4-transfected human embryonic kidney cells.

Results

Extraribosomal enzyme nature of eukaryotic S4 is described. Both human S4X and rice S4 are cysteine proteases capable of hydrolyzing a wide spectrum of peptides and natural proteins of diverse origin. Whereas rice S4 also cleaves the -XXXD↓- consensus sequence assumed to be specific for caspase-9 and granzyme B, human S4 does not. Curiously, both human and rice S4 show multiple-site autoproteolysis leading to self-annihilation. Overexpression of human S4 blocks the growth and proliferation of transfected embryonic kidney cells, presumably due to the extraribosomal enzyme trait reported.

Conclusions

The S4 proteins of humans and rice, prototypes of eukaryota, are non-specific cysteine proteases in the extraribosomal milieu.

General significance

The enzyme nature of S4 is relevant toward understanding not only the origin of ribosomal proteins, but also processes in cell biology and diseases.  相似文献   
77.
Amount and type of dietary carbohydrate (CHO), as well as the CHO:fat ratio, are thought to be critical for both the rate of development and severity of Type 2 diabetes mellitus. Thus, these nutritional considerations were examined in the previously described “spontaneous” model of diabetes and metabolic syndrome, the Nile rat. Weanling male Nile rats (n=92) were fed semipurified diets, modifying glycemic index and load by changing the amount of fiber or altering the CHO:fat ratio. Random and fasting blood glucose and body weight were assessed, and diabetes was characterized in terms of blood glucose, relevant plasma and liver parameters, food and water intake and terminal organ weights. Nile rats fed with hiCHO became more hyperglycemic than rats fed with modCHO (P<.05), while loCHO and hiCHO+hiFiber rats remained essentially normoglycemic. Liver lipid and glycogen accumulation was associated with severe hyperlipemia in diabetic rats, analogous to metabolic syndrome in humans. Advanced diabetes was linked to liver and kidney damage and elevated blood urea nitrogen with weight loss. Dispersing dietary CHO by fiber or replacing it by moderate fat (reducing the glycemic index and load) delayed the onset of diabetes but did not prevent signs of insulin resistance. A very low content of dietary CHO (high fat) seemed to prevent even these early indicators of insulin resistance. Thus, the Nile rat represents a novel CHO-sensitive model for study of Type 2 diabetes that reliably follows the course of disease in humans.  相似文献   
78.
Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.  相似文献   
79.
S4 is a paradigm of ribosomal proteins involved in multifarious activities both within and outside the ribosome. For a detailed biochemical and structural investigations of eukaryotic S4, the wheat S4 gene has been cloned and expressed in Escherichia coli, and the protein purified to a high degree of homogeneity. The 285-residue recombinant protein containing an N-terminal His(6) tag along with fourteen additional residues derived from the cloning vector is characterized by a molecular mass of 31981.24 Da. The actual sequence of 265 amino acids having a molecular mass of 29931 Da completely defines the primary structure of wheat S4. Homology modeling shows a bi-lobed protein topology arising from folding of the polypeptide into two domains, consistent with the fold topology of prokaryotic S4. The purified protein is stable and folded since it can be reversibly unfolded in guanidinium hydrochloride, and is capable of hydrolyzing cysteine protease-specific peptide-based fluorescence substrates, including Ac-DEVD-AFC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin).  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号