首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   10篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1974年   3篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
41.
The activities of streptozotocin (SZ), three structural analogs of SZ, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in producing cytotoxicity, mutations to 8-azaguanine (8-AzG) resistance, and DNA damage (single-strand breaks) in V79 Chinese hamster cells have been examined. These three biological processes appear to be associated. MNNG was about 10(3) times more active on a molar basis than SZ, and the activities of the analogs fell within these extremes.  相似文献   
42.
A procedure to measure exchange rates of fast exchanging protein amide hydrogens by time-resolved NMR spectroscopy following in situ initiation of the reaction by diluting a native protein solution into an exchanging deuterated buffer is described. The method has been used to measure exchange rates of a small set of amide hydrogens of reduced cytochrome c, maintained in a strictly anaerobic atmosphere, in the presence of an otherwise inaccessible range of guanidinium deuterochloride concentrations. The results for the measured protons indicate that hydrogen exchange in the unfolding transition region of cytochrome c reach the EX2 limit, but emphasize the difficulty in interpretation of the exchange mechanism in protein hydrogen exchange studies. Comparison of free energies of structure opening for the measured hydrogens with the global unfolding free energy monitored by far-UV CD measurements has indicated the presence of at least one partially unfolded equilibrium species of reduced cytochrome c. The results provide the first report of measurement of free energy of opening of structure to exchange in the 0–2-kcal/mol range. Proteins 32:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
43.
Small interfering (si) and short hairpin (sh) RNAs induce robust degradation of homologous mRNAs, making them a potent tool to achieve gene silencing in mammalian cells. Silencing by siRNAs is used widely because it is considered highly specific for the targeted gene, although a recent report suggests that siRNA also induce signaling through the type I IFN system. When human embryonic kidney 293 (HEK293) or keratinocyte (HaCaT) cell lines or human primary dendritic cells or macrophages were transfected with siRNA or shRNAs, suppression of nontargeted mRNA expression was detected. Additionally, siRNA and shRNA, independent of their sequences, initiated immune activation, including IFN-alpha and TNF-alpha production and increased HLA-DR expression, in transfected macrophages and dendritic cells. The siRNAs induced low, but significant, levels of IFN-beta in HEK293 and HaCaT cells. Secretion of these cytokines increased tremendously when HEK293 cells overexpressed Toll-like receptor 3 (TLR3), and the increased secretion of IFN-beta was inhibited by coexpression of an inhibitor of TIR domain-containing adapter-inducing IFN-beta, the TLR3 adaptor protein linked to IFN regulatory factor 3 signaling. Although siRNA and shRNA knockdown of genes represents a new and powerful tool, it is not without nonspecific effects, which we demonstrate are mediated in part by signaling through TLR3.  相似文献   
44.
45.

Background  

Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials.  相似文献   
46.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   
47.
Excessive post-epidural fibrosis is a common cause of recurrent back pain after spinal surgery. Though various treatment methods have been conducted, the safe and effective drug for alleviating post-epidural fibrosis remains largely unknown. Metformin, a medicine used in the treatment of type 2 diabetes, has been noted to relieve fibrosis in various organs. In the present study, we aimed to explore the roles and mechanisms of metformin in scar formation in a mouse model of laminectomy. Post-epidural fibrosis developed in a mouse model of laminectomy by spinous process and the T12-L2 vertebral plate with a rongeur. With the administration of metformin, post-epidural fibrosis was reduced, accompanied with decreased collagen and fibronectin in the scar tissues. Mechanistically, metformin decreased fibronectin and collagen deposition in fibroblast cells, and this effect was dependent on the HMGB1/TLR4 and TGF-β1/Smad3 signalling pathways. In addition, metformin influenced the metabolomics of the fibroblast cells. Taken together, our study suggests that metformin may be a potential option to mitigate epidural fibrosis after laminectomy.  相似文献   
48.
In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any “drug like” molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future.  相似文献   
49.

Background  

G protein-coupled receptors constitute the largest family of cell surface receptors in the mammalian genome. As the core of the G protein signal transduction machinery, the Gα subunits are required to interact with multiple partners. The GTP-bound active state of many Gα subunits can bind a multitude of effectors and regulatory proteins. Yet it remains unclear if the different proteins utilize distinct or common structural motifs on the Gα subunit for binding. Using Gα16 as a model, we asked if its recently discovered adaptor protein tetratricopeptide repeat 1 (TPR1) binds to the same region as its canonical effector, phospholipase Cβ (PLCβ).  相似文献   
50.
The catabolic cytokine interleukin‐1 (IL‐1) and endotoxin lipopolysaccharide (LPS) are well‐known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL‐1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti‐catabolic and anti‐inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL‐1 and LPS‐mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL‐1 and LPS‐mediated proteoglycan (PG) depletion, matrix‐degrading enzyme production, and enzyme activity in long‐term (alginate beads) and short‐term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL‐1 and LPS‐mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage‐degrading enzymes, including MMP‐1, MMP‐3, MMP‐13, ADAMTS‐4, and ADAMTS‐5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor‐induced stimulation of oxidative and inflammatory factors such as iNOS, IL‐6, and toll‐like receptor‐2 (TLR‐2) and TLR‐4. Finally, the ability of LfcinB to antagonize IL‐1 and LPS‐mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. J. Cell. Physiol. 228: 1884–1896, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号