首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   6篇
  2014年   13篇
  2013年   12篇
  2012年   25篇
  2011年   22篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   19篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有202条查询结果,搜索用时 812 毫秒
91.
Progenies of ‘Schmidt's Antonovka’ (SA) have been widely used in Western breeding programs as a source of scab resistance. The identity of SA has remained obscure, especially due to the existence of a series of ‘Antonovka’ cultivars with different origins. In this paper we show Schmidt's Antonovka to be identical to Анто?новка обыкновенный or ‘Common Antonovka’ (CA), an old Russian cultivar of unknown origin, by comparing simple sequence repeat (SSR) and SNP genotyping data from several first-generation descendants of SA from two European collections and a CA accession from the germplasm collection held at VNIISPK (The All-Russian Research Institute of Horticultural Breeding, Orel, Russia). The use of CA in Russian breeding programs is also briefly reviewed.  相似文献   
92.
93.
Cryopreservation preserves cells at low temperature and creates a reserve for future use while executing the clinical translation. Unlike articular chondrocyte, cryopreservation protocol and its outcome are not described in iliac apophyseal chondrocytes, a potential source of chondrocytes in cartilage engineering. This study for the first time describes the cryopreservation of human iliac apophyseal chondrocytes. Four cartilage samples were procured from iliac crests of children undergoing hip surgery after consent. The total chondrocyte yield was divided into two groups. First group was grown as monolayer while second group was cryopreserved following the slow cooling method in the medium containing 10 % Dimethyl sulfoxide for 3 months. Group two cells were also grown as a monolayer following thawing. Viability, time to confluence, population doubling time and phenotype maintenance were compared for both the groups. Viability was 65.75 % after 3 months of cryopreservation at ?196 °C, as compared to 94.19 % for fresh chondrocytes (p = 0.001). Fresh and cryopreserved cells reached confluence on 10th and 15th day of culture respectively. Population doubling time was significantly more in fresh than cryopreserved chondrocytes on 10th (p = 0.0006) and 15th day (p = 0.0002) in culture. Both fresh and cryopreserved cells maintain their chondrocyte phenotype as assessed by immunocytochemistry. Relative gene expression by real time polymerase chain reaction showed similar upregulation of mRNA of Collagen 2, SOX 9, Aggrecan and Collagen 1 in cryopreserved chondrocyte as compared to fresh chondrocyte. Iliac apophyseal chondrocytes cryopreserved for 3 months maintained the phenotype successfully 2 weeks after thawing in culture. The viability and proliferation rates after thawing were adequate for a clinical translation of these cells.  相似文献   
94.
Photodynamic therapy utilizes light, a photosensitizer, and molecular oxygen as a treatment modality for a variety of cancers. We have recently combined ruthenium(II) polypyridyl groups with a zinc(II) centered porphyrin as a new photosensitizer for the treatment of melanoma. In‐vitro studies have indicated that this photosensitizer is toxic to melanoma cells when irradiated with low energy light; however, it is nontoxic to normal cells under similar conditions. To determine the toxicity and cell viability of this compound in‐vivo we present, herein, a study using Drosophila melanogaster. In the absence of light, the new photosensitizer shows no discernible effects to fly larvae at various concentrations of compound and stages of larval development. When the larvae were fed the photosensitizer it was observed, by fluorescence microscopy, that the compound passes through the cell membrane and localizes in the cytosol at lower concentrations and the nucleus at slightly higher concentrations indicating that the compound is not immediately metabolized. genesis 52:309–314, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
95.
We have studied the splicing regulation of NF1 exons 36 and 37. We show that they not only require an intact exonic Splicing Enhancer (ESE) within exon 37, but also need the genomic region stretching from exons 31 to 38. Any nucleotide change in two exon 37 third codon positions disrupts the ESE. The extent of exons 36 and 37 skipping due to a mutated ESE depends on the genomic context. This is a unique example of what may be a more general phenomena involved in the tuning of pre-mRNA processing and gene expression modulation in the chromosomal setting.  相似文献   
96.
Late expression factor 4 (LEF4) is one of the four subunits of Autographa californica nuclear polyhedrosis virus (AcNPV) RNA polymerase. LEF4 was overexpressed in Escherichia coli and recombinant protein was subjected to structural characterization. Chemical induced unfolding of LEF4 was investigated using intrinsic fluorescence, hydrophobic dye binding, fluorescence quenching, and circular dichroism (CD) techniques. The unfolding of LEF4 was found to be a non‐two state, biphasic transition. Intermediate states of LEF4 at 2M GnHCl and 4M urea shared some common structural features and hence may lie on the same pathway of protein folding. Steady‐state fluorescence and far‐UV CD showed that while there was considerable shift in the wavelength of emission maximum (λmax), the secondary structure of LEF4 intermediates at 2M GnHCl and 4M urea remained intact. Further, temperature induced denaturation of LEF4 was monitored using far‐UV CD. This study points to the structural stability of LEF4 under the influence of denaturants like urea and temperature. Although LEF4 is an interesting model protein to study protein folding intermediates, in terms of functional significance the robust nature of this protein might reflect one of the several strategies adapted by the virus to survive under very adverse environmental and physiological conditions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 574–582, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
97.
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.  相似文献   
98.
CHIME syndrome is characterized by colobomas, heart defects, ichthyosiform dermatosis, mental retardation (intellectual disability), and ear anomalies, including conductive hearing loss. Whole-exome sequencing on five previously reported cases identified PIGL, the de-N-acetylase required for glycosylphosphatidylinositol (GPI) anchor formation, as a strong candidate. Furthermore, cell lines derived from these cases had significantly reduced levels of the two GPI anchor markers, CD59 and a GPI-binding toxin, aerolysin (FLAER), confirming the pathogenicity of the mutations.  相似文献   
99.
100.
Molecular Biology Reports - Genome analysis of Halomonas shambharensis, a novel species, was performed to understand the osmoprotectant strategies used by the strain to overcome the salinity stress...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号