首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   24篇
  国内免费   2篇
  2023年   2篇
  2022年   9篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   16篇
  2017年   12篇
  2016年   12篇
  2015年   20篇
  2014年   22篇
  2013年   33篇
  2012年   35篇
  2011年   51篇
  2010年   20篇
  2009年   18篇
  2008年   16篇
  2007年   22篇
  2006年   27篇
  2005年   16篇
  2004年   20篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   11篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1976年   1篇
  1975年   2篇
  1969年   1篇
  1960年   1篇
  1955年   1篇
排序方式: 共有482条查询结果,搜索用时 609 毫秒
41.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro adventitious roots were induced from leaves of Valeriana jatamansi to assess their potential as a sustainable alternative to extract...  相似文献   
42.
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5′UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.  相似文献   
43.
A series of compounds containing 2-substituted imidazoles has been synthesized from imidazole and tested for its biological activity against human African trypanosomiasis (HAT). The 2-substituted 5-nitroimidazoles such as fexinidazole (7a) and 1-[4-(1-methyl-5-nitro-1H-imidazol-2-ylmethoxy)-pyridin-2-yl-piperazine (9e) exhibited potent activity against T. brucei in vitro with low cytotoxicity and good solubility. The presence of the NO2 group at the 5-position of the imidazole ring in 2-substituted imidazoles is the crucial factor to inhibit T. brucei.  相似文献   
44.
Adult pancreatic β cells can replicate during growth and after injury to maintain glucose homeostasis. Here, we report that β cells deficient in Dnmt1, an enzyme that propagates DNA methylation patterns during cell division, were converted to α cells. We identified the lineage determination gene aristaless-related homeobox (Arx), as methylated and repressed in β cells, and hypomethylated and expressed in α cells and Dnmt1-deficient β cells. We show that the methylated region of the Arx locus in β cells was bound by methyl-binding protein MeCP2, which recruited PRMT6, an enzyme that methylates histone H3R2 resulting in repression of Arx. This suggests that propagation of DNA methylation during cell division also ensures recruitment of enzymatic machinery capable of modifying and transmitting histone marks. Our results reveal that propagation of DNA methylation during cell division is essential for repression of α cell lineage determination genes to maintain pancreatic β cell identity.  相似文献   
45.
46.
47.
In a previous study, a marine isolate Clostridium sp. EDB2 degraded 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) under anaerobic conditions (Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821); however, the enzyme responsible for CL-20 degradation was not known. In the present study, we isolated and purified an enzyme, from strain EDB2, responsible for CL-20 degradation. The enzyme was membrane-associated and NADH-dependent and had a molecular weight of 56 kDa (with SDS-PAGE). N-terminal amino acid sequence of enzyme revealed that it belonged to dehydrogenase class of enzymes. The purified enzyme degraded CL-20 at a rate of 18.5 nmol/h mg protein under anaerobic conditions. Carbon and nitrogen mass balance of the products were 100 and 64%, respectively. In LC–MS–MS studies, we detected three different initial metabolites from CL-20, i.e., mono-nitroso derivative, denitrohydrogenated product, and double-denitrated isomers with molecular weight of 422, 393, and 346 Da, corresponding to presumed empirical formulas of C6H6N12O11, C6H7N11O10, and C6H6N10O8, respectively. Identity of all the three metabolites were confirmed by using ring-labeled [15N]CL-20 and the nitro-group-labeled [15NO2]CL-20. Taken together, the above data suggested that the enzyme degraded CL-20 via three different routes: Route A, via two single electron transfers necessary to release two nitro-groups from CL-20 to produce two double-denitrated isomers; Route B, via a hydride transfer necessary to produce a denitrohydrogenated product; and Route C, via transfer of two redox equivalents to CL-20 necessary to produce a mono-nitroso derivative of CL-20. This is the first biochemical study which showed that CL-20 degradation can be initiated via more than one pathway.  相似文献   
48.
49.
In this issue of Structure, Davies et al., 2005, present shape reconstructions for the molecular motor p97 using small angle X-ray scattering (SAXS) and offer insights into how ATP consumption is coupled to cyclical domain motions. This work emphasizes the emerging potential of SAXS for visualizing the workings of biological machines in solution.  相似文献   
50.
A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D(-)) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号