首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   15篇
  国内免费   3篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   13篇
  2014年   13篇
  2013年   18篇
  2012年   10篇
  2011年   17篇
  2010年   19篇
  2009年   21篇
  2008年   15篇
  2007年   20篇
  2006年   14篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   1篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1968年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
81.
Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiSTST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of indigenous chicken of Bangladesh. These results suggest that Bangladeshi indigenous chickens still have abundant genetic diversity and have originated from multiple maternal lineages, and further conservation efforts are warranted to maintain the diversity.  相似文献   
82.
Six amino acids viz. DL-methionine, DL-valine, DL-serine, DL-phenylalanine, L-proline and L-histidine were tested against root knot of tomato caused by Meloidogyne javanica. All amino acids showed significant response in plant growth characters with corresponding reduction in the number of galls, adult females, egg masses and juvenile stages within the treated plants. DL-phenylalanine gave significantly higher response in reducing the hatch of egg masses and survival of juveniles in in vitro test compared to control. The highest plant growth and maximum reduction of galling incidence of tomato were recorded in the DL-phenylalanine- treated plants followed by L-proline and L-histidine. All the amino acids gave positive response in suppressing the development of the nematode in the treated plants.  相似文献   
83.

Background

The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome.

Method and Results

In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na+ currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation).

Conclusion

In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na+ current and depolarization force.  相似文献   
84.
85.
In plants, betaine is synthesized upon abiotic stress via choline oxidation, in which choline monooxygenase (CMO) is a key enzyme. Although it had been thought that betaine synthesis is well regulated to protect abiotic stress, it is shown here that an exogenous supply of precursors such as choline, serine, and glycine in the betaine-accumulating plant Amaranthus tricolor further enhances the accumulation of betaine under salt stress, but not under normal conditions. Addition of isonicotinic acid hydrazide, an inhibitor of glycine decarboxylase, inhibited the salinity-induced accumulation of betaine. Salt-induced accumulation of A. tricolor CMO (AmCMO) and betaine was much slower in roots than in leaves, and a transient accumulation of proline was observed in the roots. Antisense expression of AmCMO mRNA suppressed the salt-induced accumulation of AmCMO and betaine, but increased the level of choline approximately 2- 3-fold. This indicates that betaine synthesis is highly regulated by AmCMO expression. The genomic DNA, including the upstream region (1.6 kbp), of AmCMO was isolated. Deletion analysis of the AmCMO promoter region revealed that the 410 bp fragment upstream of the translation start codon contains the sequence responsive to salt stress. These data reveal that the promoter sequence of CMO, in addition to precursor supply, is important for the accumulation of betaine in the betaine-accumulating plant A. tricolor.  相似文献   
86.
KEG1/YFR042w of Saccharomyces cerevisiae is an essential gene that encodes a 200-amino acid polypeptide with four predicted transmembrane domains. The green fluorescent protein- or Myc(6)-tagged Keg1 protein showed the typical characteristics of an integral membrane protein and was found in the endoplasmic reticulum by fluorescence imaging. Immunoprecipitation from the Triton X-100-solubilized cell lysate revealed that Keg1 binds to Kre6, which has been known to participate in beta-1,6-glucan synthesis. To analyze the essential function of Keg1 in more detail, we constructed temperature-sensitive mutant alleles by error-prone polymerase chain reaction. The keg1-1 mutant cells showed a common phenotype with Deltakre6 mutant including hypersensitivity to Calcofluor white, reduced sensitivity to the K1 killer toxin, and reduced content of beta-1,6-glucan in the cell wall. These results suggest that Keg1 and Kre6 have a cooperative role in beta-1,6-glucan synthesis in S. cerevisiae.  相似文献   
87.
The present study evaluated the possible embryotrophic role of fructose supplementation in potassium simplex optimization medium (KSOM) on preimplantation development of bovine in vitro matured and fertilized (IVF) embryos under chemically defined conditions. In Experiment 1, the rates of cleavage (74.0-75.5%) and blastocyst formation (21.0-24.5%) were not affected by the supplementation of fructose in KSOM in absence or presence of glucose. In Experiment 2, the rates of cleavage (71.7-77.3%) and blastocyst formation (19.9-26.3%) did not differ significantly among the concentrations (0.0, 0.2, 1.5, 3.0, 5.6mM) of fructose supplementations in KSOM in presence of glucose. Moreover, the number of total ICM and TE cells, and percentage of ICM to total cell in blastocysts did not differ significantly among the concentrations of fructose supplementations in presence of glucose. In Experiment 3, the rates of cleavage (67.3-74.7%) and blastocyst formation (14.4-19.3%) did not differ significantly among the concentrations (0.0, 0.2, 1.5, 3.0, 5.6mM) of fructose supplementations in KSOM in absence of glucose. Although the number of total and ICM cells, and percentage of ICM to total cells in blastocysts did not differ significantly among the concentrations of fructose supplementations, 1.5mM fructose supplementation in absence of glucose had significantly (P<0.05) higher number of TE cells (106.2) than that of 5.6mM (84.0) supplementation. The study indicates that, fructose up to 5.6mM concentration can be used as an alternative for energy substrate in culture media without any detrimental effect on pre-implantation development in bovine IVF embryos.  相似文献   
88.
Vibrio cholerae O1 can cause life threatening diarrheal disease if left untreated. T cells can play critical roles in inducing B cell mediated immunity. As the mechanism of T cell dependent B cell maturation is not well established, we hypothesized that a specific population of T (follicular helper T, Tfh) cells, are involved in B cell maturation following cholera. We found flowcytometrically that V. cholerae infection induces significant increases in circulating Tfh cells expressing B cell maturation associated protein CD40L early in disease. The increased Tfh cells expressing CD40L recognize cholera toxin most prominently, with lessened responses to V. cholerae membrane preparation (MP) and V. cholerae cytolysin (VCC). We further showed that early induction of Tfh cells and CD40L was associated with later memory B cell responses to same antigens. Lastly, we demonstrated in vitro that Tfh cells isolated after cholera can stimulate class switching of co-cultured, isolated B cells from patients with cholera, leading to production of the more durable IgG antibody isotype colorimetrically. These studies were conducted on circulating Tfh cells; future studies will be directed at examining role of Tfh cells during cholera directly in gut mucosa of biopsied samples, at the single cell level if feasible.  相似文献   
89.

Aims

We previously reported that fluvoxamine, a selective serotonin reuptake inhibitor with high affinity for the σ1-receptor (σ1R), ameliorates cardiac hypertrophy and dysfunction via σ1R stimulation. Although σ1R on non-cardiomyocytes interacts with the IP3 receptor (IP3R) to promote mitochondrial Ca2 + transport, little is known about its physiological and pathological relevance in cardiomyocytes.

Main methods

Here we performed Ca2 + imaging and measured ATP production to define the role of σ1Rs in regulating sarcoplasmic reticulum (SR)-mitochondrial Ca2 + transport in neonatal rat ventricular cardiomyocytes treated with angiotensin II to promote hypertrophy.

Key finding

These cardiomyocytes exhibited imbalances in expression levels of σ1R and IP3R and impairments in both phenylephrine-induced mitochondrial Ca2 + mobilization from the SR and ATP production. Interestingly, σ1R stimulation with fluvoxamine rescued impaired mitochondrial Ca2 + mobilization and ATP production, an effect abolished by treatment of cells with the σ1R antagonist, NE-100. Under physiological conditions, fluvoxamine stimulation of σ1Rs suppressed intracellular Ca2 + mobilization through IP3Rs and ryanodine receptors (RyRs). In vivo, chronic administration of fluvoxamine to TAC mice also rescued impaired ATP production.

Significance

These results suggest that σ1R stimulation with fluvoxamine promotes SR-mitochondrial Ca2 + transport and mitochondrial ATP production, whereas σ1R stimulation suppresses intracellular Ca2 + overload through IP3Rs and RyRs. These mechanisms likely underlie in part the anti-hypertrophic and cardioprotective action of the σ1R agonists including fluvoxamine.  相似文献   
90.

Background

Mucosal Associated Invariant T (MAIT) cells are innate-like T cells found in abundance in the intestinal mucosa, and are thought to play a role in bridging the innate-adaptive interface.

Methods

We measured MAIT cell frequencies and antibody responses in blood from patients presenting with culture-confirmed severe cholera to a hospital in Dhaka, Bangladesh at days 2, 7, 30, and 90 of illness.

Results

We found that MAIT (CD3+CD4CD161hiVα7.2+) cells were maximally activated at day 7 after onset of cholera. In adult patients, MAIT frequencies did not change over time, whereas in child patients, MAITs were significantly decreased at day 7, and this decrease persisted to day 90. Fold changes in MAIT frequency correlated with increases in LPS IgA and IgG, but not LPS IgM nor antibody responses to cholera toxin B subunit.

Conclusions

In the acute phase of cholera, MAIT cells are activated, depleted from the periphery, and as part of the innate response against V. cholerae infection, are possibly involved in mechanisms underlying class switching of antibody responses to T cell-independent antigens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号