首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5147篇
  免费   435篇
  国内免费   281篇
  5863篇
  2024年   11篇
  2023年   47篇
  2022年   123篇
  2021年   210篇
  2020年   131篇
  2019年   183篇
  2018年   210篇
  2017年   143篇
  2016年   234篇
  2015年   326篇
  2014年   374篇
  2013年   334篇
  2012年   458篇
  2011年   429篇
  2010年   261篇
  2009年   252篇
  2008年   268篇
  2007年   255篇
  2006年   216篇
  2005年   201篇
  2004年   186篇
  2003年   163篇
  2002年   168篇
  2001年   100篇
  2000年   67篇
  1999年   71篇
  1998年   60篇
  1997年   42篇
  1996年   40篇
  1995年   36篇
  1994年   30篇
  1993年   23篇
  1992年   22篇
  1991年   28篇
  1990年   23篇
  1989年   20篇
  1988年   9篇
  1987年   10篇
  1986年   14篇
  1985年   18篇
  1983年   9篇
  1982年   8篇
  1981年   10篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1975年   3篇
  1972年   8篇
  1971年   4篇
  1969年   3篇
排序方式: 共有5863条查询结果,搜索用时 31 毫秒
31.
32.
【目的】中药骆驼蓬含多种生物碱,对动物有毒性。生活于荒漠半荒漠的骆驼可采食部分有毒植物而不中毒。为了解骆驼瘤胃微生物对骆驼蓬植物毒素的耐受与降解能力进行本研究。【方法】以含100mg/L纯品去氢骆驼蓬碱的M98-5培养基接种骆驼瘤胃内容物,经五代胁迫培养后分离可耐受/降解去氢骆驼蓬碱的细菌,以薄层析法检验其降解活力,以16SrRNA序列分析其进化地位。【结果】29个分离株中15株具有降解去氢骆驼蓬碱活性;16SrRNA序列分析显示,属于乳杆菌属(Lactobacillus)16株,占55%;志贺氏菌属(Shigella)7株,占24%;芽孢杆菌属(Bacillus)4株,占13.8%;肠球菌属(Enterococcus)和巨型肠球菌属(Megasphaera)各1株。【结论】可耐受/降解去氢骆驼蓬碱的骆驼瘤胃细菌仅限于少数几类,且检测到的具有降解活力的只有乳杆菌类。  相似文献   
33.
Yan G  Zhang G  Fang X  Zhang Y  Li C  Ling F  Cooper DN  Li Q  Li Y  van Gool AJ  Du H  Chen J  Chen R  Zhang P  Huang Z  Thompson JR  Meng Y  Bai Y  Wang J  Zhuo M  Wang T  Huang Y  Wei L  Li J  Wang Z  Hu H  Yang P  Le L  Stenson PD  Li B  Liu X  Ball EV  An N  Huang Q  Zhang Y  Fan W  Zhang X  Li Y  Wang W  Katze MG  Su B  Nielsen R  Yang H  Wang J  Wang X  Wang J 《Nature biotechnology》2011,29(11):1019-1023
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.  相似文献   
34.
35.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   
36.
Mycobacteria are able to enter into a state of non-replication or dormancy, which may result in their chronic persistence in soil, aquatic environments, and permissive hosts. Stresses such as nutrient deprivation and hypoxia provide environmental cues to enter a persistent state; however, a clear definition of the mechanism that mycobacteria employ to achieve this remains elusive. While the concept of sporulation in mycobacteria is not novel, it continues to spark controversy and challenges our perceptions of a non-replication. We investigated the potential role of sporulation in one-year old broth cultures of Mycobacterium subsp. paratuberculosis (MAP). We show that dormant cultures of MAP contain a mix of vegetative cells and a previously unknown morphotype resembling a spore. These spore-like structures can be enriched for using sporulating media. Furthermore, purified MAP spore forms survive exposure to heat, lysozyme and proteinase K. Heat-treated spores are positive for MAP 16SrRNA and IS900. MAP spores display enhanced infectivity as well as maintain acid-fast characteristics upon germination in a well-established bovine macrophage model. This is the first study to demonstrate a new MAP morphotype possessing spore-like qualities. Data suggest that sporulation may be a viable mechanism by which MAP accomplishes persistence in the host and/or environment. Thus, our current understanding of mycobacterial persistence, pathogenesis, epidemiology and rational drug and vaccine design may need to be reevaluated.  相似文献   
37.
Retention time prediction of peptides in liquid chromatography has proven to be a valuable tool for mass spectrometry-based proteomics, especially in designing more efficient procedures for state-of-the-art targeted workflows. Additionally, accurate retention time predictions can also be used to increase confidence in identifications in shotgun experiments. Despite these obvious benefits, the use of such methods has so far not been extended to (posttranslationally) modified peptides due to the absence of efficient predictors for such peptides. We here therefore describe a new retention time predictor for modified peptides, built on the foundations of our existing Elude algorithm. We evaluated our software by applying it on five types of commonly encountered modifications. Our results show that Elude now yields equally good prediction performances for modified and unmodified peptides, with correlation coefficients between predicted and observed retention times ranging from 0.93 to 0.98 for all the investigated datasets. Furthermore, we show that our predictor handles peptides carrying multiple modifications as well. This latest version of Elude is fully portable to new chromatographic conditions and can readily be applied to other types of posttranslational modifications. Elude is available under the permissive Apache2 open source License at http://per-colator.com or can be run via a web-interface at http://elude.sbc.su.se.  相似文献   
38.
39.
Na3V2(PO4)3 (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake‐assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as‐synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode–electrolyte contact area, and shortening the diffusion distance. The as‐synthesized material exhibits a high capacity (230 mAh g?1), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g?1, respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X‐ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high‐energy, and high‐power LIBs.  相似文献   
40.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号