首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1106篇
  免费   79篇
  2022年   8篇
  2021年   15篇
  2019年   11篇
  2018年   17篇
  2017年   14篇
  2016年   24篇
  2015年   39篇
  2014年   56篇
  2013年   63篇
  2012年   64篇
  2011年   47篇
  2010年   28篇
  2009年   34篇
  2008年   39篇
  2007年   53篇
  2006年   41篇
  2005年   47篇
  2004年   37篇
  2003年   36篇
  2002年   43篇
  2001年   41篇
  2000年   35篇
  1999年   31篇
  1998年   11篇
  1997年   12篇
  1995年   10篇
  1994年   8篇
  1993年   11篇
  1992年   22篇
  1991年   15篇
  1990年   19篇
  1989年   21篇
  1988年   17篇
  1987年   17篇
  1986年   15篇
  1985年   19篇
  1984年   12篇
  1983年   15篇
  1981年   10篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1973年   8篇
  1969年   6篇
  1968年   6篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1185条查询结果,搜索用时 15 毫秒
181.
Accumulation of manganese was measured in subcellular membrane vesicles isolated from Escherichia coli. Accumulation of (54)Mn by vesicles in 0.5 m sucrose is stimulated by glucose and d-lactate and is inhibited by metabolic poisons such as dinitrophenol, m-chlorophenyl carbonylcyanide hydrazone, valinomycin, and nigericin. Manganese uptake by vesicles requires 10 mm calcium, which is not required for uptake of manganese by intact cells. The calcium requirement is specific and cannot be replaced by magnesium, sodium, or potassium. Strontium can replace calcium but is somewhat less effective than calcium. The uptake of manganese is via a manganese-specific system which shows saturation kinetics with manganese with a K(m) of 8 x 10(-6)m and a V(max) of 4 nmoles per min per g (wet weight) at 25 C. Magnesium and calcium do not compete for uptake. The accumulated manganese can be released from the vesicles by lipid active agents such as toluene, and can be exchanged for external manganese.  相似文献   
182.
183.
Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 μg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 μg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.  相似文献   
184.
All molecular chaperones known to date are well organized, folded protein molecules whose three-dimensional structure are believed to play a key role in the mechanism of substrate recognition and subsequent assistance to folding. A common feature of all protein and nonprotein molecular chaperones is the propensity to form aggregates very similar to the micellar aggregates. In this paper we show that alpha(s)-casein, abundant in mammalian milk, which has no well defined secondary and tertiary structure but exits in nature as a micellar aggregate, can prevent a variety of unrelated proteins/enzymes against thermal-, chemical-, or light-induced aggregation. It also prevents aggregation of its natural substrates, the whey proteins. alpha(s)-Casein interacts with partially unfolded proteins through its solvent-exposed hydrophobic surfaces. The absence of disulfide bridge or free thiol groups in its sequence plays important role in preventing thermal aggregation of whey proteins caused by thiol-disulfide interchange reactions. Our results indicate that alpha(s)-casein not only prevents the formation of huge insoluble aggregates but it can also inhibit accumulation of soluble aggregates of appreciable size. Unlike other molecular chaperones, this protein can solubilize hydrophobically aggregated proteins. This protein seems to have some characteristics of cold shock protein, and its chaperone-like activity increases with decrease of temperature.  相似文献   
185.
186.
187.
188.
A common application of fluorescent proteins is to label whole cells, but many RFPs are cytotoxic when used with standard high-level expression systems. We engineered a rapidly maturing tetrameric fluorescent protein called DsRed-Express2 that has minimal cytotoxicity. DsRed-Express2 exhibits strong and stable expression in bacterial and mammalian cells, and it outperforms other available RFPs with regard to photostability and phototoxicity.  相似文献   
189.
The trans Watson-Crick/Watson-Crick family of base pairs represent a geometric class that play important structural and possible functional roles in the ribosome, tRNA, and other functional RNA molecules. They nucleate base triplets and quartets, participate as loop closing terminal base pairs in hair pin motifs and are also responsible for several tertiary interactions that enable sequentially distant regions to interact with each other in RNA molecules. Eleven representative examples spanning nine systems belonging to this geometric family of RNA base pairs, having widely different occurrence statistics in the PDB database, were studied at the HF/6-31G (d, p) level using Morokuma decomposition, Atoms in Molecules as well as Natural Bond Orbital methods in the optimized gas phase geometries and in their crystal structure geometries, respectively. The BSSE and deformation energy corrected interaction energy values for the optimized geometries are compared with the corresponding values in the crystal geometries of the base pairs. For non protonated base pairs in their optimized geometry, these values ranged from -8.19 kcal/mol to -21.84 kcal/mol and compared favorably with those of canonical base pairs. The interaction energies of these base pairs, in their respective crystal geometries, were, however, lesser to varying extents and in one case, that of A:A W:W trans, it was actually found to be positive. The variation in RMSD between the two geometries was also large and ranged from 0.32-2.19 A. Our analysis shows that the hydrogen bonding characteristics and interaction energies obtained, correlated with the nature and type of hydrogen bonds between base pairs; but the occurrence frequencies, interaction energies, and geometric variabilities were conspicuous by the absence of any apparent correlation. Instead, the nature of local interaction energy hyperspace of different base pairs as inferred from the degree of their respective geometric variability could be correlated with the identities of free and bound hydrogen bond donor/acceptor groups present in interacting bases in conjunction with their tertiary and neighboring group interaction potentials in the global context. It also suggests that the concept of isostericity alone may not always determine covariation potentials for base pairs, particularly for those which may be important for RNA dynamics. These considerations are more important than the absolute values of the interaction energies in their respective optimized geometries in rationalizing their occurrences in functional RNAs. They highlight the importance of revising some of the existing DNA based structure analysis approaches and may have significant implications for RNA structure and dynamics, especially in the context of structure prediction algorithms.  相似文献   
190.
Huntingtin interacting protein HYPK is intrinsically unstructured   总被引:1,自引:0,他引:1  
To characterize HYPK, originally identified as a novel huntingtin (Htt) interacting partner by yeast two hybrid assay, we used various biophysical and biochemical techniques. The molecular weight of the protein, determined by gel electrophoresis, was found to be about 1.3-folds ( approximately 22 kDa) higher than that obtained from mass spectrometric analysis (16.9 kDa). In size exclusion chromatography experiment, HYPK was eluted in three fractions, the hydrodynamic radii for which were calculated to be approximately 1.5-folds (23.06 A) higher than that expected for globular proteins of equivalent mass (17.3 A). The protein exhibited predominantly (63%) random coil characteristics in circular dichroism spectroscopy and was highly sensitive to limited proteolysis by trypsin and papain, indicating absence of any specific domain. Experimental evidences with theoretical analyses of amino acids composition of HYPK and comparison with available published data predicts that HYPK is an intrinsically unstructured protein (IUP) with premolten globule like conformation. In presence of increasing concentration of Ca(2+), HYPK showed conformational alterations as well as concomitant reduction of hydrodynamic radius. Even though any link between the natively unfolded nature of HYPK, its conformational sensitivity towards Ca(2+) and interaction with Htt is yet to be established, its possible involvement in Huntington's disease pathogenesis is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号