首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1089篇
  免费   77篇
  国内免费   1篇
  2022年   7篇
  2021年   14篇
  2019年   12篇
  2018年   16篇
  2017年   15篇
  2016年   21篇
  2015年   43篇
  2014年   50篇
  2013年   63篇
  2012年   59篇
  2011年   42篇
  2010年   29篇
  2009年   34篇
  2008年   45篇
  2007年   51篇
  2006年   38篇
  2005年   44篇
  2004年   40篇
  2003年   35篇
  2002年   40篇
  2001年   41篇
  2000年   35篇
  1999年   31篇
  1998年   11篇
  1997年   11篇
  1995年   10篇
  1994年   9篇
  1993年   12篇
  1992年   22篇
  1991年   15篇
  1990年   19篇
  1989年   21篇
  1988年   17篇
  1987年   17篇
  1986年   15篇
  1985年   19篇
  1984年   12篇
  1983年   15篇
  1981年   11篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1973年   8篇
  1969年   6篇
  1968年   7篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1167条查询结果,搜索用时 78 毫秒
51.
52.
Industrial effluents from jute, paper, pulp mills and sewage from households are regularly discharged into the Hooghly River. It generates a potential risk for both humans and animals of the area concerned. In the present study, water quality of the Hooghly River passing by the site of a growing township (Naihati, North 24 Parganas, West Bengal, India) was assessed throughout the year 2010 on the basis of the data collected on the physicochemical and microbiological parameters. The water samples collected on each month revealed the presence of higher amount of coliform bacteria, Streptococcus sp. and Escherichia coli, than the standard limit. Different physicochemical parameters like chemical oxygen demand, biological oxygen demand, dissolved oxygen (DO), total suspended solids, total dissolved solids (TDS), total hardness, alkalinity, chlorinity, nitrate and nitrite of the water at the sampling sites were found to be considerably higher than the levels standardized by WHO (2006). It was found that the relative abundance of Streptococcus and E. coli was influenced by two independent variables (water quality parameters), namely, DO and TDS. The abundance of coliform bacteria in the water sample warrants the adoption of proper measures to reduce the pollution level at the point source on way of scientific disposal of industrial effluents.  相似文献   
53.
Abstract

The trans Watson-Crick/Watson-Crick family of base pairs represent a geometric class that play important structural and possible functional roles in the ribosome, tRNA, and other functional RNA molecules. They nucleate base triplets and quartets, participate as loop closing terminal base pairs in hair pin motifs and are also responsible for several tertiary interactions that enable sequentially distant regions to interact with each other in RNA molecules. Eleven representative examples spanning nine systems belonging to this geometric family of RNA base pairs, having widely different occurrence statistics in the PDB database, were studied at the HF/6–31G (d, p) level using Morokuma decomposition, Atoms in Molecules as well as Natural Bond Orbital methods in the optimized gas phase geometries and in their crystal structure geometries, respectively. The BSSE and deformation energy corrected interaction energy values for the optimized geometries are compared with the corresponding values in the crystal geometries of the base pairs. For non protonated base pairs in their optimized geometry, these values ranged from ?8.19 kcal/mol to ?21.84 kcal/mol and compared favorably with those of canonical base pairs. The interaction energies of these base pairs, in their respective crystal geometries, were, however, lesser to varying extents and in one case, that of A:A W:W trans, it was actually found to be positive. The variation in RMSD between the two geometries was also large and ranged from 0.32–2.19 Å. Our analysis shows that the hydrogen bonding characteristics and interaction energies obtained, correlated with the nature and type of hydrogen bonds between base pairs; but the occurrence frequencies, interaction energies, and geometric variabilities were conspicuous by the absence of any apparent correlation. Instead, the nature of local interaction energy hyperspace of different base pairs as inferred from the degree of their respective geometric variability could be correlated with the identities of free and bound hydrogen bond donor/acceptor groups present in interacting bases in conjunction with their tertiary and neighboring group interaction potentials in the global context. It also suggests that the concept of isostericity alone may not always determine covariation potentials for base pairs, particularly for those which may be important for RNA dynamics. These considerations are more important than the absolute values of the interaction energies in their respective optimized geometries in rationalizing their occurrences in functional RNAs. They highlight the importance of revising some of the existing DNA based structure analysis approaches and may have significant implications for RNA structure and dynamics, especially in the context of structure prediction algorithms.  相似文献   
54.
Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h) of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05), compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.  相似文献   
55.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   
56.
The telomeric G‐quadruplexes for their unique structural features are considered as potential anticancer drug targets. These, however, exhibit structural polymorphism as different topology types for the intra‐molecular G‐quadruplexes from human telomeric G‐rich sequences have been reported based on NMR spectroscopy and X‐ray crystallography. These techniques provide detailed atomic‐level information about the molecule but relative conformational stability of the different topologies remains unsolved. Therefore, to understand the conformational preference, we have carried out quantum chemical calculations on G‐quartets; used all‐atom molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations to characterize the four human telomeric G‐quadruplex topologies based on its G‐tetrad core‐types, viz., parallel, anti‐parallel, mixed‐(3 + 1)‐form1 and mixed‐(3 + 1)‐form2. We have also studied a non‐telomeric sequence along with these telomeric forms giving a comparison between the two G‐rich forms. The structural properties such as base pairing, stacking geometry and backbone conformations have been analyzed. The quantum calculations indicate that presence of a sodium ion inside the G‐tetrad plane or two potassium ions on both sides of the plane give it an overall planarity which is much needed for good stacking to form a helix. MD simulations indicate that capping of the G‐tetrad core by the TTA loops keep the terminal guanine bases away from water. The SMD simulations along with equilibrium MD studies indicate that the parallel and non‐telomeric forms are comparatively less stable. We could come to the conclusion that the anti‐parallel form and also the mixed‐(3 + 1)‐form1 topology are most likely to represent the major conformation., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 83–99, 2016  相似文献   
57.
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.  相似文献   
58.
59.
microRNAs (miRNAs), the tiny but stable regulatory RNAs in metazoan cells, can undergo selective turnover in presence of specific internal and external cues to control cellular response against the changing environment. We have observed reduction in cellular miR‐122 content, due to their accelerated extracellular export in human hepatic cells starved for small metabolites including amino acids. In this context, a new role of human ELAV protein HuR has been identified. HuR, a negative regulator of miRNA function, accelerates extracellular vesicle (EV)‐mediated export of miRNAs in human cells. In stressed cells, HuR replaces miRNPs from target messages and is both necessary and sufficient for the extracellular export of corresponding miRNAs. HuR could reversibly bind miRNAs to replace them from Ago2 and subsequently itself gets freed from bound miRNAs upon ubiquitination. The ubiquitinated form of HuR is predominantly associated with multivesicular bodies (MVB) where HuR‐unbound miRNAs also reside. These MVB‐associated pool of miRNAs get exported out via EVs thereby delimiting cellular miR‐122 level during starvation. Therefore, by modulating extracellular export of miR‐122, HuR could control stress response in starved human hepatic cells.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号