首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   42篇
  国内免费   1篇
  842篇
  2022年   4篇
  2021年   13篇
  2020年   8篇
  2019年   20篇
  2018年   20篇
  2017年   11篇
  2016年   15篇
  2015年   38篇
  2014年   44篇
  2013年   34篇
  2012年   55篇
  2011年   55篇
  2010年   39篇
  2009年   30篇
  2008年   47篇
  2007年   49篇
  2006年   39篇
  2005年   25篇
  2004年   25篇
  2003年   30篇
  2002年   20篇
  2001年   14篇
  2000年   13篇
  1999年   16篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   8篇
  1985年   10篇
  1984年   5篇
  1983年   10篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1977年   5篇
  1973年   4篇
  1972年   5篇
  1970年   5篇
  1969年   4篇
  1965年   4篇
排序方式: 共有842条查询结果,搜索用时 15 毫秒
21.
22.
Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315 kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65 °C. It preferred nitro-aryl-β-d-galactoside as substrate having Km of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55 °C and 50 °C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50 °C. These results marked the applications of β-gal III in processing of milk/whey industry.  相似文献   
23.
24.
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.  相似文献   
25.
Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain more heritability than GWAS-associated SNPs on average (). For some diseases, this increase was individually significant: for Multiple Sclerosis (MS) () and for Crohn''s Disease (CD) (); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained more MS heritability than known MS SNPs () and more CD heritability than known CD SNPs (), with an analogous increase for all autoimmune diseases analyzed. We also observed significant increases in an analysis of Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with more heritability from all SNPs at GWAS loci () and more heritability from all autoimmune disease loci () compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.  相似文献   
26.
27.
28.
ATP-binding cassette transporters of the subfamily A (ABCA) are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer’s disease. However, Abca7’s role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety) and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs) and Alzheimer’s disease (i.e. cognitive domains). Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.  相似文献   
29.
A thermostable amidase produced by Geobacillus subterraneus RL-2a was purified to homogeneity, with a yield of 9.54 % and a specific activity of 48.66 U mg?1. The molecular weight of the native enzyme was estimated to be 111 kDa. The amidase of G. subterraneus RL-2a is constitutive in nature, active at a broad range of pH (4.5–11.5) and temperature (40–90 °C) and has a half-life of 5 h and 54 min at 70 °C. Inhibition of enzyme activity was observed in the presence of metal ions, such as Co2+, Hg2+, Cu2+, Ni2+, and thiol reagents. The presence of mid-chain aliphatic and amino acid amides enhances the enzymatic activity. The acyl transferase activity was detected with propionamide, butyramide and nicotinamide. The enzyme showed moderate stability toward toluene, carbon tetrachloride, benzene, ethylene glycol except acetone, ethanol, butanol, propanol and dimethyl sulfoxide. The K m and V max of the purified amidase with nicotinamide were 6.02 ± 0.56 mM and 132.6 ± 4.4 μmol min?1 mg?1 protein by analyzing Michaelis–Menten kinetics. The results of MALDI-TOF analysis indicated that this amidase has homology with the amidase of Geobacillus sp. C56-T3 (gi|297530427). It is the first reported wide-spectrum thermostable amidase from a thermophilic G. subterraneus.  相似文献   
30.
Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号