首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1303篇
  免费   118篇
  1421篇
  2023年   8篇
  2022年   25篇
  2021年   42篇
  2020年   19篇
  2019年   27篇
  2018年   35篇
  2017年   30篇
  2016年   36篇
  2015年   48篇
  2014年   46篇
  2013年   79篇
  2012年   76篇
  2011年   88篇
  2010年   38篇
  2009年   39篇
  2008年   48篇
  2007年   77篇
  2006年   46篇
  2005年   39篇
  2004年   49篇
  2003年   33篇
  2002年   31篇
  2001年   35篇
  2000年   29篇
  1999年   25篇
  1998年   13篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   26篇
  1991年   29篇
  1990年   25篇
  1989年   27篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   7篇
  1980年   6篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
排序方式: 共有1421条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.  相似文献   
85.
86.
Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES) cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation) at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.  相似文献   
87.
Complex biological systems exhibit a property of robustness at all levels of organization. Through different mechanisms, the system tries to sustain stress such as due to starvation or drug exposure. To explore whether reconfiguration of the metabolic networks is used as a means to achieve robustness, we have studied possible metabolic adjustments in Mtb upon exposure to isoniazid (INH), a front-line clinical drug. The redundancy in the genome of M. tuberculosis (Mtb) makes it an attractive system to explore if alternate routes of metabolism exist in the bacterium. While the mechanism of action of INH is well studied, its effect on the overall metabolism is not well characterized. Using flux balance analysis, inhibiting the fluxes flowing through the reactions catalyzed by Rv1484, the target of INH, significantly changes the overall flux profiles. At the pathway level, activation or inactivation of certain pathways distant from the target pathway, are seen. Metabolites such as NADPH are shown to reduce drastically, while fatty acids tend to accumulate. The overall biomass also decreases with increasing inhibition levels. Inhibition studies, pathway level clustering and comparison of the flux profiles with the gene expression data indicate the activation of folate metabolism, ubiquinone metabolism, and metabolism of certain amino acids. This analysis provides insights useful for target identification and designing strategies for combination therapy. Insights gained about the role of individual components of a system and their interactions will also provide a basis for reconstruction of whole systems through synthetic biology approaches.  相似文献   
88.
Meconium aspiration syndrome (MAS) is common among newborn children but its mechanism is unclear. The syndrome is known to produce a strong inflammatory reaction in the lungs resulting in massive cell death. In this work we studied lung cell death by apoptosis after meconium aspiration in forty two-week-old rabbit pups. Analyzing lung samples by ISEL-DNA end labeling demonstrated the specific spread of apoptotic bodies throughout the lungs. These bodies were shrunken and smaller in size compared to normal cells and many of them were lacking cell membranes. About 70% of all apoptotic bodies were found among the airway epithelium cell eight hours after meconium instillation. In comparison, among lung alveolar cells, only about 20% cells were apoptotic in the same animals. In meconium-treated lungs and A549 cells, a significant increase of angiotensinogen mRNA and Caspase-3 expression were observed. The pretreatment of cells with Caspase-3 inhibitor ZVAD-fmk significantly inhibited meconium-induced lung cell death by apoptosis. These findings demonstrate the apoptotic process in meconium-instilled lungs or A549 cells in culture. Our results show lung airway epithelial and A549 cell apoptosis after meconium instillation. We suggest that studies of lung airway epithelial cell death are essential to understanding the pathophysiology of MAS and may present a key point in future therapeutic applications.  相似文献   
89.
A new system is described to determine the mutational spectra of mutagens and carcinogens in Escherichia coli; data on a limited number (142) of spontaneous mutants is presented. The mutational assay employs a method to select (rather than screen) for mutations in a supF target gene carried on a plasmid. The E. coli host cells (ES87) are lacI (am26), and carry the lacZΔM15 marker for α-complementation in β-galactosidase. When these cells also carry a plasmid, such as pUB3, which contains a wild-type copy of supF and lacZ-α, the lactose operon is repressed (off). Furthermore, supF suppression of laclum26 results in a lactose repressor that has an uninducible, laclS genotype, which makes the cells unable to grow on lactose minimal plates. In contrast, spontaneous or mutagen-induced supF mutations in pUB3 prevent suppresion of laclam26 and result in constitutive expression of the lactose operon, which permits growth on lactose minimal plates. The spontaneous mutation frequency in the supF gene is 0.7 and 1.0 × 10−6 without and with SOS induction, respectively. Spontaneous mutations are dominated by large insertions (67% in SOS-uninduced and 56% in SOS-induced cells), and their frequency of appearance is largely unaffected by SOS induction. These are identified by DNA sequencing to be Insertion Element: IS1 dominates, but IS4, IS5, gamma-delta and IS10 are also obtained. Large deletions also contribute significantly (19% and 15% for - SOS and +SOS, respectively), where a specific deletion between a 10 base pair direct repeat dominates; the frequency of appearance of these mutations also appears to be unaffected by SOS induction. In contrast, SOS induction increases base pairing mutations (13% and 27% for -SOS and +SOS, respectively), The ES87/pUB3 system has many advantages for determining mutational spectra, including the fact that mutant isolation is fast and simple, and the determination of mutational changes is rapid because of the small size of supF.  相似文献   
90.
Opas (protein IIs) are a family of surface-exposed proteins of Neisseria gonorrhoeae. Each strain of N. gonorrhoeae has multiple (10-11) genes encoding for Opas. Identifiable elements in opa genes include the coding repeat within the signal sequence, conserve 5' and 3' regions, and hypervariable regions (HV1 and HV2) located within the structural gene. N. gonorrhoeae strains appear to have many biological properties in common that are either HV-region-mediated or associated with the presence of specific HV regions, suggesting that HV regions could be found in many clinical isolates. Oligonucleotides from three source strains representing three conserved regions of opa, 12 HV1 regions, and 14 HV2 regions were used by dot blot analysis to probe 120 clinical isolates of N. gonorrhoeae. The probe for the coding repeat hybridized to all 120 strains, the 3' conserved-region probe reacted with 98% of the strains, and the 5' conserved-region probe with 90% of the strains. Nine HV1 probes hybridized to 3.3-39.2% of the strains, and 13 of the HV2 probes hybridized to 1.7-25% of the isolates. Analysis of the number of probes that hybridized to each of the isolates showed that 19% did not hybridize with any of the HV1 probes and 25% did not hybridize with any of the HV2 probes. Approximately three-quarters of the isolates hybridized with one, two or three of the HV1 probes or one, two or three of the HV2 probes; 89% of the isolates hybridized to least one HV1 or one HV2 probe. The data indicate that some genes encoding HV regions of N. gonorrhoeae Opa proteins are widely distributed in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号