首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   116篇
  1378篇
  2023年   7篇
  2022年   19篇
  2021年   39篇
  2020年   18篇
  2019年   24篇
  2018年   28篇
  2017年   28篇
  2016年   35篇
  2015年   42篇
  2014年   46篇
  2013年   76篇
  2012年   75篇
  2011年   87篇
  2010年   38篇
  2009年   38篇
  2008年   47篇
  2007年   76篇
  2006年   45篇
  2005年   39篇
  2004年   50篇
  2003年   33篇
  2002年   30篇
  2001年   34篇
  2000年   29篇
  1999年   25篇
  1998年   12篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   26篇
  1991年   28篇
  1990年   24篇
  1989年   27篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   7篇
  1980年   6篇
  1979年   17篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
排序方式: 共有1378条查询结果,搜索用时 15 毫秒
81.
Breast cancer is a common disease in females but very rare in males, in whom it shows a more metastatic behavior, and a worse prognosis. Matrix metalloprotease-2 (MMP-2) and MMP-9 are proteolytic enzymes balanced by tissue inhibitor of MMP-2 (TIMP-2), commonly involved in cancer metastasis. This is the first study on gelatinolytic activity in male breast cancer patients, compared to that in female patients. In cancer tissues, both gelatinases were more expressed than in normal samples, being and more concentrated in male than in female patients. TIMP-2 levels were slightly increased in normal compared to those in cancer tissues and more concentrated in males than in females. Immunostaining showed that in male cancer tissues MMP-2 and MMP-9 staining was more intense and diffuse than in female cancer tissues, while no differences were observed regarding TIMP-2. In conclusion, the increased expression of gelatinases in male breast cancer patients together with anatomical features might explain the high tendency toward metastasis and the worse prognosis.  相似文献   
82.
Clinostat rotation induces apoptosis in luteal cells of the pregnant rat   总被引:1,自引:0,他引:1  
Recent studies have shown that microgravity induces changes at the cellular level, including apoptosis. However, it is unknown whether microgravity affects luteal cell function. This study was performed to assess whether microgravity conditions generated by clinostat rotation induce apoptosis and affect steroidogenesis by luteal cells. Luteal cells isolated from the corpora lutea of Day 8 pregnant rats were placed in equal numbers in slide flasks (chamber slides). One slide flask was placed in the clinostat and the other served as a stationary control. At 48 h in the clinostat, whereas the levels of progesterone and total cellular protein decreased, the number of shrunken cells increased. To determine whether apoptosis occurred in shrunken cells, Comet and TUNEL assays were performed. At 48 h, the percentage of apoptotic cells in the clinostat increased compared with that in the control. To investigate how the microgravity conditions induce apoptosis, the active mitochondria in luteal cells were detected with JC-1 dye. Cells in the control consisted of many active mitochondria, which were evenly distributed throughout the cell. In contrast, cells in the clinostat displayed fewer active mitochondria, which were distributed either to the outer edge of the cell or around the nucleus. These results suggest that mitochondrial dysfunction induced by clinostat rotation could lead to apoptosis in luteal cells and suppression of progesterone production.  相似文献   
83.
Dantrolene is a drug that suppresses intracellular Ca(2+) release from sarcoplasmic reticulum (SR) in skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Although its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca(2+) release channel in SR, as a molecular target for dantrolene using the photoaffinity analog [(3)H]azidodantrolene. Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [(3)H]azidodantrolene, indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1 previously shown to affect RyR1 function in vitro and in vivo were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2s, peptides containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [(3)H]azidodantrolene. A monoclonal anti-RyR1 antibody that recognizes RyR1 and its 1400-amino acid N-terminal fragment recognizes DP1 and DP1-2s in both Western blots and immunoprecipitation assays and specifically inhibits [(3)H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in SR. Our results indicate that synthetic domain peptides can mimic a native, ligand-binding conformation in vitro and that the dantrolene-binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino acids 590-609.  相似文献   
84.
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.  相似文献   
85.
Wingless (Wg) and other Wnt proteins play a crucial role in a number of developmental decisions in a variety of organisms. In the ventral nerve cord of the Drosophila embryo, Wg is non-autonomously required for the formation and specification of a neuronal precursor cell, NB4-2. NB4-2 gives rise to a well-studied neuronal lineage, the RP2/sib lineage. While the various components of the Wg-signaling pathway are also required for generating NB4-2, the target gene(s) of this pathway in the signal-receiving cell is not known. In this paper, we show that sloppy paired 1 and sloppy paired 2 function as the downstream targets of the Wg signaling to generate the NB4-2 cell. Thus, while the loss-of-function mutations in wg and slp have the same NB4-2 formation and specification defects, these defects in wg mutants can be rescued by expressing slp genes from a heterologous promoter. That slp genes function downstream of the Wg signaling is also indicated by the result that expression of slp genes is lost from the neuroectoderm in wg mutants and that ectopic expression of wg induces ectopic expression of slp. Finally, previous results show that Gooseberry (Gsb) prevents Wg from specifying NB4-2 identity to the wg-expressing NB5-3. In this paper, we also show that gsb interacts with slp and prevents Slp from specifying NB4-2 identity. Overexpression of slp overcomes this antagonistic interaction and respecifies NB5-3 as NB4-2. This respecification, however, can be suppressed by a simultaneous overexpression of gsb at high levels. This mechanism appears to be responsible for specifying NB5-3 identity to a row 5 neuroblast and preventing Wg from specifying NB4-2 identity to that cell.  相似文献   
86.
Cellulases and related enzymes in biotechnology   总被引:33,自引:0,他引:33  
Basic and applied research on microbial cellulases, hemicellulases and pectinases has not only generated significant scientific knowledge but has also revealed their enormous potential in biotechnology. At present, cellulases and related enzymes are used in food, brewery and wine, animal feed, textile and laundry, pulp and paper industries, as well as in agriculture and for research purposes. Indeed, the demand for these enzymes is growing more rapidly than ever before, and this demand has become the driving force for research on cellulases and related enzymes. The present article is an overview of the biotechnological state-of-the-art for cellulases and related enzymes.  相似文献   
87.
Abstract: In vitro studies indicate that p42/p44MAPK phosphorylate both nuclear and cytoplasmic proteins. However, the functional targets of p42/p44MAPK activation in vivo remain unclear. To address this question, we localized activated p42/p44MAPK in hippocampus and cortex and determined their signaling effects after electroconvulsive shock treatment (ECT) in rats. Phosphorylated p42/p44MAPK content increased in the cytoplasm of hippocampal neurons in response to ECT. Consistent with this cytoplasmic localization, inhibition of ECT-induced p42/p44MAPK activation by the extracellular signal-regulated kinase kinase inhibitor PD098059 blocked phosphorylation of the cytoplasmic protein microtubule-associated protein 2c (MAP2c), but failed to inhibit the induction of the nuclear protein c-Fos in response to ECT. In contrast to hippocampal neurons, cortical neurons exhibited an increase in amount of phosphorylated p42/p44MAPK in both the nucleus and cytoplasm after ECT. Accordingly, PD098059 blocked the induction of Fos-like immunoreactivity in the nuclei of cortical neurons as well as MAP2c phosphorylation in the cytoplasm. Our data indicate that both nuclear and cytoplasmic substrates can be activated by p42/p44MAPK in vivo. However, the functional targets of p42/p44MAPK signaling depend on the precise location of p42/p44MAPK within different subcellular compartments of brain regions. These results indicate unique functional pathways of p42/p44MAPK-mediated signal transduction within different brain regions in vivo.  相似文献   
88.
Deleted in Breast Cancer 1 (DBC1) is an important metabolic sensor. Previous studies have implicated DBC1 in various cellular functions, notably cell proliferation, apoptosis, histone modification, and adipogenesis. However, current reports about the role of DBC1 in tumorigenesis are controversial and designate DBC1 alternatively as a tumor suppressor or a tumor promoter. In the present study, we report that polyoma small T antigen (PyST) associates with DBC1 in mammalian cells, and this interaction leads to the posttranslational downregulation of DBC1 protein levels. When coexpressed, DBC1 overcomes PyST-induced mitotic arrest and promotes the exit of cells from mitosis. Using both transient and stable modes of PyST expression, we also show that cellular DBC1 is subjected to degradation by LKB1, a tumor suppressor and cellular energy sensor kinase, in an AMP kinase-independent manner. Moreover, LKB1 negatively regulates the phosphorylation as well as activity of the prosurvival kinase AKT1 through DBC1 and its downstream pseudokinase substrate, Tribbles 3 (TRB3). Using both transient transfection and stable cell line approaches as well as soft agar assay, we demonstrate that DBC1 has oncogenic potential. In conclusion, our study provides insight into a novel signaling axis that connects LKB1, DBC1, TRB3, and AKT1. We propose that the LKB1–DBC1–AKT1 signaling paradigm may have an important role in the regulation of cell cycle and apoptosis and consequently tumorigenesis.  相似文献   
89.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   
90.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号