首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   23篇
  国内免费   2篇
  2023年   1篇
  2022年   4篇
  2021年   12篇
  2020年   4篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   22篇
  2015年   26篇
  2014年   31篇
  2013年   27篇
  2012年   49篇
  2011年   46篇
  2010年   24篇
  2009年   27篇
  2008年   38篇
  2007年   34篇
  2006年   24篇
  2005年   26篇
  2004年   23篇
  2003年   20篇
  2002年   16篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1929年   1篇
排序方式: 共有547条查询结果,搜索用时 328 毫秒
501.
Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH, suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.  相似文献   
502.
Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines.  相似文献   
503.
Suppression of the activity of pro-apoptotic Bcl-2-family proteins frequently confers chemoresistance to many human cancer cells. Using subcellular fractionation, the ER calcium (Ca++) channel inhibitor dantrolene and small interfering RNA (siRNA) against Bax or Bak, we show that the new synthetic bichalcone analog TSWU-CD4 induces apoptosis in human cancer cells by releasing endoplasmic reticulum (ER)-stored Ca++ through ER/mitochondrial oligomerization of Bax/Bak. Blockade of the protein kinase RNA-like ER kinase or the unfolded protein response regulator glucose-regulated protein 78 expression by siRNA not only suppressed oligomeric Bax/Bak-mediated pro-caspase-12 cleavage and apoptosis but also resulted in an inhibition of Bcl-2 downregulation induced by TSWU-CD4. Induction of the ER oligomerization of Bax/Bak and apoptosis by TSWU-CD4 were suppressed by Bcl-2 overexpression. Inhibition of lipid raft-associated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling by TSWU-CD4 induced ER stress- and oligomeric Bax/Bak-mediated apoptosis, which were substantially reversed by overexpression of the wt PI3K p85α subunit. Taken together, these results suggest that suppression of lipid raft-associated PI3K/Akt signaling is required for the ER stress-mediated apoptotic activity of Bax/Bak, which is responsible for the ability of TSWU-CD4-treated cancer cells to exit the ER-mitochondrial apoptotic cell death pathway.  相似文献   
504.
We report the establishment of an efficient and heritable gene mutagenesis method in the silkworm Bombyx mori using modified type II clustered regularly interspaced short palindromic repeats (CRISPR) with an associated protein (Cas9) system. Using four loci Bm-ok, BmKMO, BmTH, and Bmtan as candidates, we proved that genome alterations at specific sites could be induced by direct microinjection of specific guide RNA and Cas9-mRNA into silkworm embryos. Mutation frequencies of 16.7–35.0% were observed in the injected generation, and DNA fragments deletions were also noted. Bm-ok mosaic mutants were used to test for mutant heritability due to the easily determined translucent epidermal phenotype of Bm-ok-disrupted cells. Two crossing strategies were used. In the first, injected Bm-ok moths were crossed with wild-type moths, and a 28.6% frequency of germline mutation transmission was observed. In the second strategy, two Bm-ok mosaic mutant moths were crossed with each other, and 93.6% of the offsprings appeared mutations in both alleles of Bm-ok gene (compound heterozygous). In summary, the CRISPR/Cas9 system can act as a highly specific and heritable gene-editing tool in Bombyx mori.  相似文献   
505.
WA-CMS system based rice hybrids are widely adopted in many rice growing countries, including India. Even though it is well known that the trait is controlled by mitochondria, the genes underpinning the trait remain enigmatic. In the present study, a complete genome-wide comparative sequence analysis was performed using draft mitochondrial genomes of WA-CMS and male fertile lines in a step-wise manner, progressively covering 5–10 kb every time through BLASTN tool. The sequence polymorphisms identified in different mitochondrial regions were targeted to develop two different sets of dominant PCR-based markers, one consisting of six markers targeting WA-CMS mitochondria, the other set consisting of five markers targeting male fertile mitochondria in addition to development of a set of eight co-dominant PCR-based markers targeting both the genomes. When a set of candidate genes/ORFs reported earlier to be associated with WA-CMS trait in rice were analyzed through RT-PCR of RNA isolated from immature rice florets, it was observed that the chimeric ORF, WA352 is expressed only in WA-CMS line and hybrid (i.e. genotypes containing sterile mitochondria), indicating it’s candidacy for the WA-CMS trait. Targeting the functional nucleotide polymorphism between WA-CMS and maintainer mitochondria with respect to WA352, two dominant markers, one targeting sterile and another targeting fertile mitochondria were developed. In addition, a robust, co-dominant functional marker targeting the candidate gene was also developed and validated for its utility in identification of genetic impurities in seed lots of WA-CMS lines.  相似文献   
506.
Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.  相似文献   
507.
Fucoxanthin (Fx) and fucosterol (Fs) are characteristic lipid components of brown seaweeds that afford several health benefits to humans. This article describes the quantitative evaluation of lipids of 15 species of brown seaweeds with specific reference to Fx, Fs, and functional long‐chain omega‐6/omega‐3 polyunsaturated fatty acids (PUFAs). In addition, fatty‐acid composition of selected species was also accomplished in the study. Major omega‐3 PUFAs in the brown seaweeds analyzed were α‐linolenic acid (18:3n‐3), octadecatetraenoic acid (18:4n‐3), arachidonic acid (20:4n‐6), and eicosapentaenoic acid (20:5n‐3). Both Fx (mg · g?1 dry weight [dwt]) and Fs (mg · g?1 dwt) were determined to be relatively abundant in Sargassum horneri (Turner) C. Agardh (Fx, 3.7 ± 1.6; Fs, 13.4 ± 4.4) and Cystoseira hakodatensis (Yendo) Fensholt (Fx, 2.4 ± 0.9; Fs, 8.9 ± 2.0), as compared with other brown seaweed species. Studies related to seasonal variation in Fx, Fs, and total lipids of six brown algae [S. horneri, C. hakodatensis, Sargassum fusiforme (Harv.) Setch., Sargassum thunbergii (Mertens ex Roth) Kuntze, Analipus japonicus (Harv.) M. J. Wynne, and Melanosiphon intestinalis (D. A. Saunders) M. J. Wynne] indicated that these functional lipid components reached maximum during the period between January and March. The functional lipid components present in these seaweeds have the potential for application as nutraceuticals and novel functional ingredients after their recovery.  相似文献   
508.
A major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) spectrum disorder is the hexanucleotide G4C2 repeat expansion in the first intron of the C9orf72 gene. Many underlying mechanisms lead to manifestation of disease that include toxic gain-of-function by repeat G4C2 RNAs, dipeptide repeat proteins, and a reduction of the C9orf72 gene product. The C9orf72 protein interacts with SMCR8 and WDR41 to form a trimeric complex and regulates multiple cellular pathways including autophagy. Here, we report the structure of the C9orf72-SMCR8 complex at 3.8 Å resolution using single-particle cryo-electron microscopy (cryo-EM). The structure reveals 2 distinct dimerization interfaces between C9orf72 and SMCR8 that involves an extensive network of interactions. Homology between C9orf72-SMCR8 and Folliculin-Folliculin Interacting Protein 2 (FLCN-FNIP2), a GTPase activating protein (GAP) complex, enabled identification of a key residue within the active site of SMCR8. Further structural analysis suggested that a coiled-coil region within the uDenn domain of SMCR8 could act as an interaction platform for other coiled-coil proteins, and its deletion reduced the interaction of the C9orf72-SMCR8 complex with FIP200 upon starvation. In summary, this study contributes toward our understanding of the biological function of the C9orf72-SMCR8 complex.

Structural and biochemical characterisation of the C9orf72-SMCR8 complex sheds light on its overall architecture and highlights its role as a multi-functional scaffold for coordinating autophagy.  相似文献   
509.
MOTIVATION: Inclusion body formation has been a major deterrent for overexpression studies since a large number of proteins form insoluble inclusion bodies when overexpressed in Escherichia coli. The formation of inclusion bodies is known to be an outcome of improper protein folding; thus the composition and arrangement of amino acids in the proteins would be a major influencing factor in deciding its aggregation propensity. There is a significant need for a prediction algorithm that would enable the rational identification of both mutants and also the ideal protein candidates for mutations that would confer higher solubility-on-overexpression instead of the presently used trial-and-error procedures. RESULTS: Six physicochemical properties together with residue and dipeptide-compositions have been used to develop a support vector machine-based classifier to predict the overexpression status in E.coli. The prediction accuracy is approximately 72% suggesting that it performs reasonably well in predicting the propensity of a protein to be soluble or to form inclusion bodies. The algorithm could also correctly predict the change in solubility for most of the point mutations reported in literature. This algorithm can be a useful tool in screening protein libraries to identify soluble variants of proteins.  相似文献   
510.
Various species of Mycobacteria produce a major cell wall-associated lipoglycan, called Lipoarabinomannan (LAM), which is involved in the virulence of Mycobacterial species. In this study, we tried to establish the role of the increased IL-10 secretion under Arabinosylated-LAM (Ara-LAM) treatment, the LAM that induces apoptosis in host macrophages or PBMC. We have studied the survival and apoptotic factors by western blotting, and estimated nitrite generation by Griess reaction, quantified iNOS mRNA by semi-quantitative RT-PCR, and ultimately the fate of the cells were studied by Flow Cytometric Analysis of AnnexinV-FITC binding. As per our observations, neutralization of released IL-10 in C57BL/6 peritoneal macrophages prior to Ara-LAM treatment, as well as macrophages from IL-10 knockout (KO) mice treated with Ara-LAM, showed significant down regulation of pro-apoptotic factors and up regulation of survival factors. These effects were strikingly similar to those when peritoneal macrophages were subjected to TNF-α and IL-12 neutralization followed by Ara-LAM-treatment. However, under similar conditions virulent Mannosylated-LAM (from Mycobacterium tuberculosis) treatment of macrophages clearly depicts the importance of IL-10 in the maintenance of pathogenesis, proving its usual immunosuppressive role. Thus, from our detailed investigations we point out an unusual pro-inflammatory action of IL-10 in Ara-LAM treated macrophages, where it behaves in a similar manner as the known Th1 cytokines TNF- α and IL-12. This work is financed by the Council of Scientific and Industrial Research (CSIR), Govt. of India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号