首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   27篇
  国内免费   1篇
  2023年   5篇
  2022年   11篇
  2021年   12篇
  2020年   14篇
  2019年   16篇
  2018年   27篇
  2017年   11篇
  2016年   16篇
  2015年   18篇
  2014年   18篇
  2013年   28篇
  2012年   30篇
  2011年   46篇
  2010年   27篇
  2009年   15篇
  2008年   18篇
  2007年   17篇
  2006年   14篇
  2005年   15篇
  2004年   14篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   2篇
  1991年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有481条查询结果,搜索用时 15 毫秒
321.
Emerging evidence indicates that membrane lipids regulate protein networking by directly interacting with protein-interaction domains (PIDs). As a pilot study to identify and functionally annodate lipid-binding PIDs on a genomic scale, we performed experimental and computational studies of PDZ domains. Characterization of 70 PDZ domains showed that ~40% had submicromolar membrane affinity. Using a computational model built from these data, we predicted the membrane-binding properties of 2,000 PDZ domains from 20 species. The accuracy of the prediction was experimentally validated for 26 PDZ domains. We also subdivided lipid-binding PDZ domains into three classes based on the interplay between membrane- and protein-binding sites. For different classes of PDZ domains, lipid binding regulates their protein interactions by different mechanisms. Functional studies of a PDZ domain protein, rhophilin 2, suggest that all classes of lipid-binding PDZ domains serve as genuine dual-specificity modules regulating protein interactions at the membrane under physiological conditions.  相似文献   
322.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   
323.
Phytochemical and pharmacological studies in genus Berberis   总被引:1,自引:0,他引:1  
The genus Berberis is well known for its diversity and pharmacological uses in traditional medicine system since ancient time. Exploring this medicinal plant with more prominence is the need of present day medicinal system. The present review highlighted the phytochemical and pharmacological studies reported from genus Berberis over the last two decades.  相似文献   
324.
325.
Cyclosporine A, a potent immunosuppressive agent extensively used to prevent allograft rejections, is under scrutiny due to severe toxic effects. CsA therapy is often continued during pregnancy in conditions such as organ transplantations and autoimmune diseases. Herein, we investigated the effects of CsA on early morphogenesis of zebrafish and identified a spectrum of proteins whose expression was altered in the drug treated embryos. Time-lapse fluorescence imaging of germ-line double transgenic zebrafish embryos treated with CsA revealed severe blood regurgitation in heart chambers, absence of blood circulation in vessels, pericardial and yolk sac edema. We also observed lack of mature blood vessels and down-regulation of endothelial markers in CsA treated embryos. Proteomic analysis using 2D-DIGE followed by mass-spectrometry led to the identification of 37 proteins whose expression was significantly modulated in presence of the drug. These proteins were mostly associated with cytoskeletal/structural assembly, lipid-binding, stress response and metabolism. Furthermore, mRNA expression analysis of eight proteins and Western blotting of actin revealed consistency between the changes observed in protein expression and its corresponding mRNA levels. Our findings demonstrate that CsA administration during early morphogenesis in zebrafish modulates the expression of some proteins which are known to be involved in important physiological processes.  相似文献   
326.
A group of N-1 and C-3 disubstituted-indole Schiff bases bearing an indole N-1 (R′ = H, CH2Ph, COPh) substituent in conjunction with a C-3 –CHN–C6H4–4-X (X = F, Me, CF3, Cl) substituent were synthesized and evaluated as inhibitors of cyclooxygenase (COX) isozymes (COX-1/COX-2). Within this group of Schiff bases, compounds 15 (R1 = CH2Ph, X = F), 17 (R1 = CH2Ph, X = CF3), 18 (R1 = COPh, X = F) and 20 (R1 = COPh, X = CF3) were identified as effective and selective COX-2 inhibitors (COX-2 IC50’s = 0.32–0.84 μM range; COX-2 selectivity index (SI) = 113 to >312 range). 1-Benzoyl-3-[(4-trifluoromethylphenylimino)methyl]indole (20) emerged as the most potent (COX-1 IC50 >100 μM; COX-2 IC50 = 0.32 μM) and selective (SI >312) COX-2 inhibitor. Furthermore, compound 20 is a selective COX-2 inhibitor in contrast to the reference drug indomethacin that is a potent and selective COX-1 inhibitor (COX-1 IC50 = 0.13 μM; COX-2 IC50 = 6.9 μM, COX-2 SI = 0.02). Molecular modeling studies employing compound 20 showed that the phenyl CF3 substituent attached to the CN spacer is positioned near the secondary pocket of the COX-2 active site, the CN nitrogen atom is hydrogen bonded (N?NH = 2.85 Å) to the H90 residue, and the indole N-1 benzoyl is positioned in a hydrophobic pocket of the COX-2 active site near W387.  相似文献   
327.
Dendritic cells (DCs) are potent antigen-presenting cells that are specialized in initiation of T-cell immunity. DCs induce promising anti-tumor T-cell and clinical responses, apparently without significant toxicity. Under certain conditions, DCs even silence T-cell immune responses in vivo. This dual capacity to modulate the immune system uniquely positions DCs for the treatment of autoimmunity, cancer and chronic viral infections.  相似文献   
328.
Inhibin is a non-steroidal glycoprotein hormone of gonadal origin with major action as negative feedback control of the production of FSH by the anterior pituitary gland. The physiological role of inhibin has led to the development of inhibin immunogens for fertility enhancement in farm animals. It is envisaged that a reduction of endogenous inhibin secretion would increase FSH concentrations and thus offers a potential for increasing the number of ovulatory follicles in the ovary. The present work was carried out to produce recombinant bovine (Indian Sahiwal Cattle; Bos indicus) alpha inhibin (bINH-α) in E. coli by optimizing its expression and purification in biologically active form and to study its immunological characterization. A bacterial protein expression vector system based on the phage T(5) promoter was used. The bINH-α encoding gene was successfully cloned and expressed in E. coli and the purified recombinant bINH-α was characterized. Recombinant bINH-α (25?μg?mL(-1)) immunized guinea pigs had a significant increase in litter size compared to the control group. These results indicate a role for recombinant bINH-α as a fecundity vaccine to enhance the ovulation rate and litter size in animals.  相似文献   
329.
The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials.  相似文献   
330.
Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are the key components of cholinergic system apart from acetylcholinesterase. Effects of subcutaneous exposures of 0.25 and 0.5 LD(50) sarin and 0.75 mg/kg physostigmine on immunoreactivity levels of these two proteins (ChAT and VAChT) were studied. Immunoreactivity levels of ChAT decreased significantly after 1 and 3 days in cortex and 3 days of 0.25 LD(50) sarin administration in cerebellum. While 0.5 LD(50) sarin exposure caused significant down regulation after 2.5 h to 7 days in cortex and 1 and 3 days in cerebellum with respect to controls. Physostigmine at 0.75 mg/kg dose showed enhanced levels of ChAT after 1 day which decreased significantly after 3 and 7 days both in cortex and cerebellum compared to controls. VAChT level decreased significantly after 1 day in cortex and 3 and 7 days in cerebellum after 0.25 LD(50) sarin administration, while 0.5 LD(50) sarin significantly lowered VAChT immunoreactivity level after 2.5 h and 7 days in cortex and 2.5 h and 1 day in cerebellum. Physostigmine at 0.75 mg/kg dose showed significant enhanced immunoreactivity levels of VAChT after 1, 3, and 7 days in cortex and 3 days in cerebellum. Results show that acetylcholinesterase inhibition by sarin caused reduction in cholinergic neurotransmission at cholinergic proteins expression levels, while physostigmine caused differential expression of key cholinergic proteins. Moreover, cortex, which receives greater cholinergic innervations, is more susceptible to anticholinesterase effect on cholinergic gene expression. These changes can explain delayed neurocognitive changes during anticholinesterases induced chronic neurotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号