首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   35篇
  国内免费   1篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   8篇
  2019年   11篇
  2018年   14篇
  2017年   11篇
  2016年   18篇
  2015年   21篇
  2014年   26篇
  2013年   37篇
  2012年   32篇
  2011年   36篇
  2010年   23篇
  2009年   18篇
  2008年   29篇
  2007年   41篇
  2006年   33篇
  2005年   12篇
  2004年   28篇
  2003年   22篇
  2002年   15篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
排序方式: 共有505条查询结果,搜索用时 47 毫秒
101.
102.
103.
Pyridine and pyridine based products are of major concern as environmental pollutants due to their recalcitrant, persistent, toxic and teratogenic nature. In this study, we describe biodegradation of pyridine by an isolated consortium/strain under aerobic condition. Batch experiment results reveal that at lower initial pyridine concentrations (1-20 mg l(-1)), almost complete degradation was observed whereas at higher concentration (30-50 mg l(-1)), the degradation efficiency was dropped significantly. This may be due to inhibitory effect of pyridine at higher concentrations. The value of decay and yield coefficient was also determined. Furthermore, the bio-augmentation of isolated consortium/strain into the activated sludge consortium in different quantity has been also done and the effect of bio-augmentation on degradation has been studied. The results reveal that as the quantity of bio-augmentation increases, the degradation of pyridine increases. At 25% bio-augmentation, complete degradation of 20 mg l(-1) of pyridine can be achieved within 96 h of incubation. Thus, the study concluded that the bio-augmentation of the isolated consortium/strain into the sludge enhances the pyridine degradation efficiency of the biomass.  相似文献   
104.
The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20.  相似文献   
105.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   
106.
107.
Mitophagy is one of the processes that cells use to maintain overall health. An E3 ligase, parkin, ubiquitinates mitochondrial proteins prior to their degradation by autophagasomes. USP30 is an enzyme that de-ubiquitinates mitochondrial proteins; therefore, inhibiting this enzyme could foster mitophagy. Herein, we disclose the structure–activity relationships (SAR) within a novel series of highly selective USP30 inhibitors. Two structurally similar compounds, MF-094 (a potent and selective USP30 inhibitor) and MF-095 (a significantly less potent USP30 inhibitor), serve as useful controls for biological evaluation. We show that MF-094 increases protein ubiquitination and accelerates mitophagy.  相似文献   
108.
109.
110.
Ellobium chinense (Pfeiffer, 1854) is a brackish pulmonate species that inhabits the bases of mangrove trees and is most commonly found in salt grass meadows. Threats to mangrove ecosystems due to habitat degradation and overexploitation have threatened the species with extinction. In South Korea, E. chinense has been assessed as vulnerable, but there are limited data on its population structure and distribution. The nucleotide and protein sequences for this species are not available in databases, which limits the understanding of adaptation-related traits. We sequenced an E. chinense cDNA library using the Illumina platform, and the subsequent bioinformatics analysis yielded 227,032 unigenes. Of these unigenes, 69,088 were annotated to matched protein and nucleotide sequences in databases, for an annotation rate of 30.42%. Among the predominant gene ontology terms, cellular and metabolic processes (under the biological process category), membrane and cell (under the cellular component category), and binding and catalytic activity (under the molecular function category) were noteworthy. In addition, 4850 unigenes were distributed to 15 Kyoto Encyclopaedia of Genes and Genomes based enrichment categories. Among the candidate genes related to adaptation, angiotensin I converting enzyme, adenylate cyclase activating polypeptide, and AMP-activated protein kinase were the most prominent. A total of 15,952 simple sequence repeats (SSRs) were identified in sequences of?>?1 kb in length. The di- and trinucleotide repeat motifs were the most common. Among the repeat motif types, AG/CT, AC/GT, and AAC/GTT dominated. Our study provides the first comprehensive genomics dataset for E. chinense, which favors conservation programs for the restoration of the species and provides sufficient evidence for genetic variability among the wild populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号