首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   50篇
  353篇
  2023年   3篇
  2021年   7篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   12篇
  2012年   13篇
  2011年   11篇
  2010年   17篇
  2009年   17篇
  2008年   17篇
  2007年   16篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   15篇
  2001年   18篇
  2000年   5篇
  1999年   13篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有353条查询结果,搜索用时 15 毫秒
21.
22.
The Escherichia coli DNA glycosylase Mug excises 3,N(4)-ethenocytosines (epsilon C) and uracils from DNA, but its biological function is obscure. This is because epsilon C is not found in E. coli DNA, and uracil-DNA glycosylase (Ung), a distinct enzyme, is much more efficient at removing uracils from DNA than Mug. We find that Mug is overexpressed as cells enter stationary phase, and it is maintained at a fairly high level in resting cells. This is true of cells grown in rich or minimal media, and the principal regulation of mug is at the level of mRNA. Although the expression of mug is strongly dependent on the stationary-phase sigma factor, sigma(S), when cells are grown in minimal media, it shows only a modest dependence on sigma(S) when cells are grown in rich media. When mug cells are maintained in stationary phase for several days, they acquire many more mutations than their mug(+) counterparts. This is true in ung as well as ung(+) cells, and a majority of new mutations may not be C to T. Our results show that the biological role of Mug parallels its expression in cells. It is expressed poorly in exponentially growing cells and has no apparent role in mutation avoidance in these cells. In contrast, Mug is fairly abundant in stationary-phase cells and has an important anti-mutator role at this stage of cell growth. Thus, Mug joins a very small coterie of DNA repair enzymes whose principal function is to avoid mutations in stationary-phase cells.  相似文献   
23.
Maize malic enzyme was rapidly inactivated by micromolar concentrations of cupric nitrate in the presence of ascorbate at pH, 5.0. Ascorbate or Cu2+ alone had no effect on enzyme activity. The substrate L-malate or NADP individually provided almost total protection against Cu2+-ascorbate inactivation. The loss of enzyme activity was accompanied by cleavage of the enzyme. The cleaved peptides showed molecular mass of 55 kDa, 48 kDa, 38 kDa, and 14 kDa. Addition of EDTA, histidine and imidazole provided protection. The results of protection experiments with sodium azide, DABCO and catalase suggested that reactive oxygen species were generated resulting in loss of enzyme activity. This was further supported by experiments showing that the rate of enzyme inactivation was higher in D2O than in water. It is suggested that maize malic enzyme is modified by reactive oxygen species like singlet oxygen and H2O2 generated by Cu2+-ascorbate system and the modified amino acid residue(s) may be located at or near the substrate-binding site of the enzyme.  相似文献   
24.

Background  

The detection of relationships between a protein sequence of unknown function and a sequence whose function has been characterised enables the transfer of functional annotation. However in many cases these relationships can not be identified easily from direct comparison of the two sequences. Methods which compare sequence profiles have been shown to improve the detection of these remote sequence relationships. However, the best method for building a profile of a known set of sequences has not been established. Here we examine how the type of profile built affects its performance, both in detecting remote homologs and in the resulting alignment accuracy. In particular, we consider whether it is better to model a protein superfamily using a single structure-based alignment that is representative of all known cases of the superfamily, or to use multiple sequence-based profiles each representing an individual member of the superfamily.  相似文献   
25.
Previously, we identified two genes in Bradyrhizobium japonicum (ndvB, ndvC) that are required for cyclic beta-(1 --> 3),(1 --> 6)-D-glucan synthesis and successful symbiotic interaction with soybean (Glycine max). In this study, we report a new open reading frame (ORF1) located in the intergenic region between ndvB and ndvC, which is essential for beta-glucan synthesis and effective nodulation of G. max. This new gene is designated ndvD (nodule development). The ndvD translation product has a predicted molecular mass of 26.4 kDa with one transmembrane domain. Genetic experiments involving gene deletion, Tn5 insertion, and gene complementation revealed that the mutation of ndvD generated pleiotropic phenotypes, including hypoosmotic sensitivity, reduced motility, and defects in conjugative gene transfer, in addition to symbiotic ineffectiveness. Although deficient in in vivo beta-glucan synthesis, membrane preparations from the ndvD mutant synthesized neutral beta-glucans in vitro. Therefore, ndvD does not appear to be a structural gene for beta-glucan synthesis. Our hypothesis for the mechanism of beta-(1 --> 3),(1 --> 6)-D-glucan synthesis is presented.  相似文献   
26.
Bhagwat AS  Carpenter MA  Bujnicki JM 《DNA Repair》2008,7(3):349-50; author reply 351-2
  相似文献   
27.
28.
Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1-->3),beta-(1-->6)-D-glucans during growth in hypoosmotic environments, and evidence is growing that these molecules may have a specific function during plant-microbe interactions in addition to osmoregulation. Site-directed Tn5 mutagenesis of the DNA region upstream of ndvB resulted in identification of a new gene (ndvC) involved in beta-(1--> 3), beta-(1-->6)-glucan synthesis and in nodule development. The predicted translation product was a polypeptide (ca. 62 kDa) with several transmembrane domains. It contained a sequence characteristic of a conserved nucleoside-sugar-binding motif found in many bacterial enzymes and had 51% similarity with a beta-glucanosyltransferase from Candida albicans. B. japonicum carrying a Tn5 insertion in ndvC resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1--> 3)-glycosyl linkages. The mutant strain was only slightly sensitive to hypoosmotic growth conditions compared with the ndvB mutant, but it was severely impaired in symbiotic interactions with soybean (Glycine max). Nodulation was delayed by 8 to 10 days, and many small nodule-like structures apparently devoid of viable bacteria were formed. This finding suggests that the structure of the beta-glucan molecule is important for a successful symbiotic interaction, and beta-glucans may have a specific function in addition to their role in hypoosmotic adaptation.  相似文献   
29.

Background  

Annotation of sequences that share little similarity to sequences of known function remains a major obstacle in genome annotation. Some of the best methods of detecting remote relationships between protein sequences are based on matching sequence profiles. We analyse the superfamily specific performance of sequence profile-profile matching. Our benchmark consists of a set of 16 protein superfamilies that are highly diverse at the sequence level. We relate the performance to the number of sequences in the profiles, the profile diversity and the extent of structural conservation in the superfamily.  相似文献   
30.
In this paper we demonstrate the study of plant water balanceby the non-invasive measurement of tissue water content andwater flow using proton nuclear magnetic resonance (NMR). Sapvelocity and flux were measured independently in the presenceof an excess of stationary tissue water. The instrumentationdescribed allows automated and unattended measurement of flow-and water content-variables in a well-defined region of theplant over periods of several days, with a time resolution betweensuccessive measurements of c. 5 s. Using this apparatus theeffect of changes in light intensity (day/night rhythm) andrelative humidity on stem tissue water content as well as onthe velocity and flux of xylem sap in the stem were investigatedin a cucumber plant. The results are in agreement with predictionsfrom a simple model for plant water balance, which is basedon water potential, flow rate and resistance to flow. As longas only transpiration is varied, flow rate and water content(or potential) are affected in opposite ways as demonstratedin this paper. In contrast, the model predicts that changesin uptake (resulting from changes in, for example, root resistance)will induce changes in water content and flow in the same direction.An experimental verification of this prediction is given ina subsequent paper, where, in addition, the NMR results arecompared to those obtained with a dendrometer. Key words: Water balance model, Cucumis sativus L., flow, water content, NMR, water balance measurement  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号