首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   50篇
  353篇
  2023年   3篇
  2021年   7篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   12篇
  2012年   13篇
  2011年   11篇
  2010年   17篇
  2009年   17篇
  2008年   17篇
  2007年   16篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   15篇
  2001年   18篇
  2000年   5篇
  1999年   13篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有353条查询结果,搜索用时 13 毫秒
1.
2.
(3-Pyridinyl)alkanoic acids substituted at the 4-position with an (arylsulfonamido)alkyl group were synthesized and found to behave as platelet thromboxane receptor antagonists (TxRAs) and thromboxane synthase inhibitors (TxSIs). The compounds behaved as agonists at the vascular receptor for thromboxane A2.  相似文献   
3.
Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1-->3),beta-(1-->6)-D-glucans during growth in hypoosmotic environments, and evidence is growing that these molecules may have a specific function during plant-microbe interactions in addition to osmoregulation. Site-directed Tn5 mutagenesis of the DNA region upstream of ndvB resulted in identification of a new gene (ndvC) involved in beta-(1--> 3), beta-(1-->6)-glucan synthesis and in nodule development. The predicted translation product was a polypeptide (ca. 62 kDa) with several transmembrane domains. It contained a sequence characteristic of a conserved nucleoside-sugar-binding motif found in many bacterial enzymes and had 51% similarity with a beta-glucanosyltransferase from Candida albicans. B. japonicum carrying a Tn5 insertion in ndvC resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1--> 3)-glycosyl linkages. The mutant strain was only slightly sensitive to hypoosmotic growth conditions compared with the ndvB mutant, but it was severely impaired in symbiotic interactions with soybean (Glycine max). Nodulation was delayed by 8 to 10 days, and many small nodule-like structures apparently devoid of viable bacteria were formed. This finding suggests that the structure of the beta-glucan molecule is important for a successful symbiotic interaction, and beta-glucans may have a specific function in addition to their role in hypoosmotic adaptation.  相似文献   
4.
Multiple shoots were produced from nodal explants of cassava (Manihot esculenta Crantz) by a two-step procedure: a 6- to 8-day exposure to 0.11–0.22 µM thidiazuron (TDZ) in liquid Murashige and Skoog (MS) medium followed by culture on agar-solidified MS medium supplemented with 2.2 µM 6-benzyladenine (BA) and 1.6 M gibberellic acid (GA3). TDZ caused the nodal explants to expand and this expansion (growth) continued during culture with BA and GA3. From this expanded explant, clusters of buds and fasciated stems developed continuously and these gave rise to shoots. The shoot proliferation process was open-ended, yielding an average of 31.5 shoots per nodal explant after 10 weeks of culture with genotype CG 1–56. A positive response was also obtained from seven other genotypes evaluated with this protocol.Abbreviations BA 6-benzyladenine - BM basal medium - DPU 1,3-diphenylurea - GA3 gibberellie acid - 2iP isopentenyladenine - MSM multiple shoot medium - NAA 1-naphthaleneacetic acid - PGR plant growth regulator - TDZ thidiazuron - Z zeatin  相似文献   
5.
The production of antimicrobial phytoalexins is one of the best-known inducible defence responses following microbial infection of plants or treatment with elicitors. In the legume soybean (Glycine max L.), 1,3-1,6--glucans derived from the fungal pathogen Phytophthora sojae have been identified as potent elicitors of the synthesis of the phytoalexin, glyceollin. Recently it has been reported that during symbiotic interaction between soybean and the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110 the bacteria synthesize cyclic 1,3-1,6--glucans. Here we demonstrate that both the fungal and the bacterial -glucans are ligands of -glucan-binding sites which are putative receptors for the elicitor signal compounds in soybean roots. Whereas the fungal -glucans stimulate phytoalexin synthesis at low concentrations, the bacterial cyclic 1,3-1,6--glucans appear to be inactive even at relatively high concentrations. Competition studies indicate that increasing concentrations of the bacterial 1,3-1,6--glucans progressively inhibit stimulation of phytoalexin synthesis in a bioassay induced by the fungal 1,3-1,6--glucans. Another type of cyclic -glucan, a 1,2--glucan from Rhizobium meliloti, that does not nodulate on soybean, seems to be inactive as elicitor and as ligand of the -glucan-binding sites. These results may indicate a novel mechanism for a successful plant-symbiont interaction by suppressing the plant's defence response.Abbreviations HG-APEA 1-[2-(4-aminophenyl)ethyl]amino-l-[hexaglucosyl]deoxyglucitol - HG-AzPEA l-[2-(4-azidophenyl)-ethyl]amino-l-[hexaglucosyl]deoxyglucitol - IC50 concentration for half-maximal displacement We thank Ines Arlt for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 369), the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Fonds der Chemischen Industrie (J.E.), and USDA CSRS NRI Competitive Research grant 93373059233 (A.A.B.).  相似文献   
6.
All DNA (cytosine-5)-methyltransferases contain a single conserved cysteine. It has been proposed that this cysteine initiates catalysis by attacking the C6 of cytosine and thereby activating the normally inert C5 position. We show here that substitutions of this cysteine in the E. coli methylase M. EcoRII with either serine or tryptophan results in a complete loss of ability to transfer methyl groups to DNA. Interestingly, mutants with either serine or glycine substitution bind tightly to substrate DNA. These mutants resemble the wild-type enzyme in that their binding to substrate is not eliminated by the presence of non-specific DNA in the reaction, it is sensitive to methylation status of the substrate and is stimulated by an analog of the methyl donor. Hence the conserved cysteine is not essential for the specific stable binding of the enzyme to its substrate. However, substitution of the cysteine with the bulkier tryptophan does reduce DNA binding. We also report here a novel procedure for the synthesis of DNA containing 5-fluorocytosine. Further, we show that a DNA substrate for M. EcoRII in which the target cytosine is replaced by 5-fluorocytosine is a mechanism-based inhibitor of the enzyme and that it forms an irreversible complex with the enzyme. As expected, this modified substrate does not form irreversible complexes with the mutants.  相似文献   
7.
Predictive motifs derived from cytosine methyltransferases.   总被引:36,自引:51,他引:36       下载免费PDF全文
Thirteen bacterial DNA methyltransferases that catalyze the formation of 5-methylcytosine within specific DNA sequences possess related structures. Similar building blocks (motifs), containing invariant positions, can be found in the same order in all thirteen sequences. Five of these blocks are highly conserved while a further five contain weaker similarities. One block, which has the most invariant residues, contains the proline-cysteine dipeptide of the proposed catalytic site. A region in the second half of each sequence is unusually variable both in length and sequence composition. Those methyltransferases that exhibit significant homology in this region share common specificity in DNA recognition. The five highly conserved motifs can be used to discriminate the known 5-methylcytosine forming methyltransferases from all other methyltransferases of known sequence, and from all other identified proteins in the PIR, GenBank and EMBL databases. These five motifs occur in a mammalian methyltransferase responsible for the formation of 5-methylcytosine within CG dinucleotides. By searching the unidentified open reading frames present in the GenBank and EMBL databases, two potential 5-methylcytosine forming methyltransferases have been found.  相似文献   
8.
The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na+] and [K+] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na+‐selective class I‐HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single‐nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near‐isogenic lines (NILs): 157‐14 (double homozygote for the cheesmaniae alleles) and 157‐17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157‐14 in comparison with 157‐17. A significant difference between NILs was also found for [K+] and the [Na+]/[K+] ratio in leaf and stem but not for [Na+] arising a disagreement with the corresponding RIL population. Their association with leaf [Na+] and salt tolerance in tomato is also discussed.  相似文献   
9.
10.
Oral pathogens have created a menace in recent years due to biofilm formation and antimicrobial drug resistance. The current treatment strategy works well with antibiotics. However, constant use of antibiotics creates a selective pressure, which increases adaptability of the pathogens. Therefore, it is of interest to analyze the potential targets of genistein in dental pathogens using computer aided prediction tools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号