首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   15篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   8篇
  2013年   1篇
  2012年   7篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   10篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
101.
Voltage-activated complexation is the process by which a transmembrane potential drives complex formation between a membrane-embedded channel and a soluble or membrane-peripheral target protein. Metabolite and calcium flux across the mitochondrial outer membrane was shown to be regulated by voltage-activated complexation of the voltage-dependent anion channel (VDAC) and either dimeric tubulin or α-synuclein (αSyn). However, the roles played by VDAC's characteristic attributes—its anion selectivity and voltage gating behavior—have remained unclear. Here, we compare in vitro measurements of voltage-activated complexation of αSyn with three well-characterized β-barrel channels—VDAC, MspA, and α-hemolysin—that differ widely in their organism of origin, structure, geometry, charge density distribution, and voltage gating behavior. The voltage dependences of the complexation dynamics for the different channels are observed to differ quantitatively but have similar qualitative features. In each case, energy landscape modeling describes the complexation dynamics in a manner consistent with the known properties of the individual channels, while voltage gating does not appear to play a role. The reaction free energy landscapes thus calculated reveal a non-trivial dependence of the αSyn/channel complex stability on the surface density of αSyn.  相似文献   
102.
Mass spectrometry has been applied to the structural analysis of one of the glycopeptides from blastolysin, antitumor bacterial preparation isolated from the Lactobacillus bulgaricus cell wall. The glycopeptide (MW 10,000) was subjected to partial acid hydrolysis (6 N HCl, 100 degrees C) and the resulting products were dansylated or trifluoroacetylated and methylated or deuteromethylated. The mixture of these derivatives was examined by high-performance liquid chromatography or gas chromatography followed by mass spectrometry using electron impact and ammonia chemical ionization techniques.  相似文献   
103.
With few exceptions, membrane lipids are usually regarded as a kind of filler or passive solvent for membrane proteins. Yet, cells exquisitely control membrane composition. Many phospholipids found in plasma membrane bilayers favor packing into inverted hexagonal bulk phases. It was suggested that the strain of forcing such lipids into a bilayer may affect membrane protein function, such as the operation of transmembrane channels. To investigate this, we have inserted the peptide alamethicin into bilayer membranes composed of lipids of empirically determined inverted hexagonal phase "spontaneous radii" Ro, which will have expectably different degrees of strain when forced into bilayer form. We observe a correlation between measured Ro and the relative probabilities of different conductance states. States of higher conductance are more probable in dioleoylphosphatidylethanolamine, the lipid of highest curvature, 1/Ro, than in dioleoylphosphatidylcholine, the lipid of lowest curvature.  相似文献   
104.
105.
A model of correlative variability of AB0 blood groups and a quantitative trait (mad-model) was analysed. Statistics for evaluation of additive and non-additive effects of alleles IA, IB and i on quantitative trait were developed. Restrictions of the model application are discussed. The obtained results may be used in genetic epidemiology for study of sensitivity or resistance to different diseases.  相似文献   
106.
Reversible blockage of the voltage-dependent anion channel (VDAC) of the mitochondrial outer membrane by dimeric tubulin is being recognized as a potent regulator of mitochondrial respiration. The tubulin-blocked state of VDAC is impermeant for ATP but only partially closed for small ions. This residual conductance allows studying the nature of the tubulin-blocked state in single-channel reconstitution experiments. Here we probe this state by changing lipid bilayer charge from positive to neutral to negative. We find that voltage sensitivity of the tubulin-VDAC blockage practically does not depend on the lipid charge and salt concentration with the effective gating charge staying within the range of 10-14 elementary charges. At physiologically relevant low salt concentrations, the conductance of the tubulin-blocked state is decreased by positive and increased by negative charge of the lipids, whereas the conductance of the open channel is much less sensitive to this parameter. Such a behavior supports the model in which tubulin's negatively charged tail enters the VDAC pore, inverting its anionic selectivity to cationic and increasing proximity of ion pathways to the nearest lipid charges as compared with the open state of the channel.  相似文献   
107.
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA63, C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA63, which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers.  相似文献   
108.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of VDAC blockage by tubulin involves tubulin interaction with the membrane as a critical step. The on-rate of the blockage varies up to 100-fold depending on the particular lipid composition used for bilayer formation in reconstitution experiments and increases with the increasing content of dioleoylphosphatidylethanolamine (DOPE) in dioleoylphosphatidylcholine (DOPC) bilayers. At physiologically low salt concentrations, the on-rate is decreased by the charged lipid. The off-rate of VDAC blockage by tubulin does not depend on the lipid composition. Using confocal fluorescence microscopy, we compared tubulin binding to the membranes of giant unilamellar vesicles (GUVs) made from DOPC and DOPC/DOPE mixtures. We found that detectable binding of the fluorescently labeled dimeric tubulin to GUV membranes requires the presence of DOPE. We propose that prior to the characteristic blockage of VDAC, tubulin first binds to the membrane in a lipid-dependent manner. We thus reveal a new potent regulatory role of the mitochondrial lipids in control of the mitochondrial outer membrane permeability and hence mitochondrial respiration through tuning VDAC sensitivity to blockage by tubulin. More generally, our findings give an example of the lipid-controlled protein-protein interaction where the choice of lipid species is able to change the equilibrium binding constant by orders of magnitude.  相似文献   
109.
To re‐examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high‐resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes.  相似文献   
110.
Whereas it is now clear that human bone marrow stromal cells (BMSCs) can be immunosuppressive and escape cytotoxic lymphocytes (CTLs) in vitro and in vivo, the mechanisms of this phenomenon remain controversial. Here, we test the hypothesis that BMSCs suppress immune responses by Fas-mediated apoptosis of activated lymphocytes and find both Fas and FasL expression by primary BMSCs. Jurkat cells or activated lymphocytes were each killed by BMSCs after 72 h of co-incubation. In comparison, the cytotoxic effect of BMSCs on non-activated lymphocytes and on caspase-8(−/−) Jurkat cells was extremely low. Fas/Fc fusion protein strongly inhibited BMSC-induced lymphocyte apoptosis. Although we detected a high level of Fas expression in BMSCs, stimulation of Fas with anti-Fas antibody did not result in the expected BMSC apoptosis, regardless of concentration, suggesting a disruption of the Fas activation pathway. Thus BMSCs may have an endogenous mechanism to evade Fas-mediated apoptosis. Cumulatively, these data provide a parallel between adult stem/progenitor cells and cancer cells, consistent with the idea that stem/progenitor cells can use FasL to prevent lymphocyte attack by inducing lymphocyte apoptosis during the regeneration of injured tissues.Human bone marrow stromal cells (BMSCs)2 (also referred to as mesenchymal stem cells (MSCs)) (1) contain a subset of multipotent, non-hematopoietic stem/progenitor cells. BMSCs can differentiate into hematopoiesis-supporting stromal tissue, adipocytes, osteoblasts, and chondrocytes (2, 3). In addition, they may be able to transdifferentiate into hepatocytes, myocytes, neuroectodermal cells, and endothelial cells, (46) although proof of such differentiation is not definitive to date. BMSCs have immunosuppressive potential, as recently demonstrated in both in vitro (7) and in vivo (8, 9) systems, including clinical studies (10, 11). However, the mechanisms by which BMSCs suppress immune responses are unresolved. Soluble factor-mediated immunosuppressive effects are beginning to come to light, (10, 12), and in addition there are as yet unexplained effects of cell-to-cell contact.In the present study, we hypothesize that BMSC-mediated cytotoxicity of lymphocytes involves the FasL-activated apoptotic machinery. FasL is a type II transmembrane protein belonging to the tumor necrosis factor (TNF) family. FasL interacts with its receptor, Fas (CD95/APO-1) and triggers a cascade of subcellular events culminating in apoptotic cell death. FasL and Fas are key regulators of apoptosis in the immune system. In addition, FasL is expressed by cells in immune-privileged sites, such as cancer cells, neurons, eyes, cytotrophoblasts of the placenta, and reproductive organs (1317). In neurons, FasL expression specifically protects against T cell-mediated cytotoxicity (16).The discovery that FasL is also expressed by a variety of tumor cells raises the possibility that FasL may mediate immune privilege in human tumors (18). Activated T cells expressing Fas are sensitive to Fas-mediated apoptosis. Thus, up-regulation of FasL expression by tumor cells may enable tumorigenesis by targeting apoptosis in infiltrating lymphocytes. In the present work, we show that BMSCs can mediate immunosuppressive activity by FasL-induced killing of activated lymphocytes. Thus, BMSCs have properties of immune-privileged cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号