首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   11篇
  174篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   12篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   11篇
  2007年   14篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有174条查询结果,搜索用时 46 毫秒
91.
BACKGROUND: Reactive oxygen species and oxidative stress are implicated in hepatic stellate cell activation and liver fibrosis, which are initiated by recruitment of inflammatory cells and by activation of cytokines. OBJECTIVE: The possible anti-oxidant and anti-inflammatory effects of ghrelin were evaluated in a hepatic fibrosis model in rats with bile duct ligation (BDL). METHODS: Under anesthesia, bile ducts of Sprague Dawley rats were ligated, and half of the rats were subcutaneously administered with ghrelin (10 ng/kg/day) and the rest with saline for 28 days. Sham-operated control groups were administered saline or ghrelin. On the 28th day of the study, rats were decapitated and malondialdehyde (MDA) content--an index of lipid peroxidation, and myeloperoxidase (MPO) activity--an index of neutrophil infiltration--were determined in the liver tissues. Oxidant-induced tissue fibrosis was determined by collagen contents, while the hepatic injury was analyzed microscopically. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage, respectively. Pro-inflammatory cytokines; TNF-alpha, IL-1beta and IL-6 were also assayed in plasma samples. RESULTS: In the saline-treated BDL group, hepatic MDA levels, MPO activity and collagen content were increased (p<0.001), suggesting oxidative organ damage, as confirmed histologically. In the ghrelin-treated BDL group, however, all of the oxidant responses were reversed significantly (p<0.05-p<0.001). Serum AST, ALT, LDH levels, and cytokines were elevated in the BDL group as compared to the control group, while this increase was significantly decreased by ghrelin treatment. CONCLUSION: Owing to the anti-inflammatory and anti-oxidant effect as demonstrated in our study, it is possible to speculate that exogenously administered ghrelin may possess an antifibrotic effect against biliary obstruction-induced liver fibrosis. Thus, it seems likely that ghrelin may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   
92.
93.
Benzimidazoles of both natural and synthetic sources are the key components of many bio-active compounds. Several reports have shown antifungal, antiviral, H(2) receptor blocker and antitumor activities for benzimidazoles and their derivatives. In this study, we synthesized twelve bis-benzimidazole derivatives by selecting di(1H-benzo[d]imidazol-2-yl)methane as the main compound. The numbers of carbons at 2 positions of bis-benzimidazole derivatives were changed from 1 to 4, and derivatives were synthesized with methyl substitutions at 5- and/or 6- positions. The compounds were screened via in vitro plasmid superciol relaxation assays using mammalian DNA topoisomerase I and cytostatic assays were carried out against HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma) cells for selected derivatives. Our results suggest that the malonic acid derivatives of bis-benzimidazoles, namely, bis(5-methyl-1H-benzo[d]imidazol-2-yl)methane and bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)methane, were remarkably active compounds in interfering with DNA topoisomerase I and the former compound was also found to be cytotoxic against MCF7 and A431 cells. The inhibitory effects obtained with these derivatives are significant as these compounds can be potential sources of anticancer agents.  相似文献   
94.

Background

Human induced pluripotent stem cells (IPSCs) have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell “rejuvenation.”

Methodology/Principal Findings

We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5), telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs). In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres.

Conclusions/Significance

While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.  相似文献   
95.
Epigenetic aberrancies likely preclude correct and complete nuclear reprogramming following somatic cell nuclear transfer (SCNT), and may underlie the observed reduced viability of cloned embryos. In the present study, we tested the effects of the histone deacetylase inhibitor (HDACi), trichostatin A (TSA), on development and histone acetylation of cloned bovine preimplantation embryos. Our results indicated that treating activated reconstructed SCNT embryos with 50 nM TSA for 13 h produced eight-cell embryos with levels of acetylation of histone H4 at lysine 5 (AcH4K5) similar to fertilized counterparts and significantly greater than in control NT embryos (p < 0.005). Further, TSA treatment resulted in SCNT embryos with preimplantation developmental potential similar to fertilized counterparts, as no difference was observed in cleavage and blastocyst rates or in blastocyst total cell number (p > 0.05). Measurement of eight selected developmentally important genes in single blastocysts showed a similar expression profile among the three treatment groups, with the exception of Nanog, Cdx2, and DNMT3b, whose expression levels were higher in TSA-treated NT than in in vitro fertilized (IVF) embryos. Data presented herein demonstrate that TSA can improve at least one epigenetic mark in early cloned bovine embryos. However, evaluation of development to full-term is necessary to ascertain whether this effect reflects a true increase in developmental potential.  相似文献   
96.
In this study, culture conditions were optimized to improve lovastatin production by Omphalotus olearius, isolate OBCC 2002, using statistical experimental designs. The Plackett–Burman design was used to select important variables affecting lovastatin production. Accordingly, glucose, peptone, and agitation speed were determined as the variables that have influence on lovastatin production. In a further experiment, these variables were optimized with a Box–Behnken design and applied in a submerged process; this resulted in 12.51 mg/L lovastatin production on a medium containing glucose (10 g/L), peptone (5 g/L), thiamine (1 mg/L), and NaCl (0.4 g/L) under static conditions. This level of lovastatin production is eight times higher than that produced under unoptimized media and growth conditions by Omphalotus olearius. To the best of our knowledge, this is the first attempt to optimize submerged fermentation process for lovastatin production by Omphalotus olearius.  相似文献   
97.
Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60–500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires.  相似文献   
98.
Vibrio cholerae switches between free-living motile and surface-attached sessile lifestyles. Cyclic diguanylate (c-di-GMP) is a signaling molecule controlling such lifestyle changes. C-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain. We constructed in-frame deletions of all V. cholerae genes encoding proteins with GGDEF and/or EAL domains and screened mutants for altered motility phenotypes. Of 52 mutants tested, four mutants exhibited an increase in motility, while three mutants exhibited a decrease in motility. We further characterized one mutant lacking VC0137 (cdgJ), which encodes an EAL domain protein. Cellular c-di-GMP quantifications and in vitro enzymatic activity assays revealed that CdgJ functions as a PDE. The cdgJ mutant had reduced motility and exhibited a small decrease in flaA expression; however, it was able to produce a flagellum. This mutant had enhanced biofilm formation and vps gene expression compared to that of the wild type, indicating that CdgJ inversely regulates motility and biofilm formation. Genetic interaction analysis revealed that at least four DGCs, together with CdgJ, control motility in V. cholerae.Cyclic diguanylate (c-di-GMP) is a ubiquitous second messenger in bacteria. It is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain (46, 48, 50). The receptors of c-di-GMP, which can be proteins or RNAs (riboswitches), bind to c-di-GMP and subsequently transmit the signal to downstream targets (22). C-di-GMP signaling is predicted to occur via a common or localized c-di-GMP pool(s) through so-called c-di-GMP signaling modules harboring DGCs and PDEs, receptors, and targets that affect cellular function (22).C-di-GMP controls various cellular functions, including the transition between a planktonic lifestyle and biofilm lifestyle. In general, high concentrations of c-di-GMP promote the expression of adhesive matrix components and result in biofilm formation, while low concentrations of c-di-GMP result in altered motility upon changes in flagellar or pili function and/or production (reviewed in reference 25). C-di-GMP inversely regulates motility and biofilm formation by implementing control at different levels through gene expression or through posttranslational mechanisms (reviewed in reference 25).Vibrio cholerae, the causative agent of the disease cholera, uses c-di-GMP signaling to undergo a motile-to-sessile lifestyle switch that is important for both environmental and in vivo stages of the V. cholerae life cycle. The survival of the pathogen in both natural aquatic environments and during infection depends on the appropriate regulation of motility, surface attachment, and colonization factors (26). The V. cholerae genome encodes a total of 62 putative c-di-GMP metabolic enzymes: 31 with a GGDEF domain, 12 with an EAL domain, 10 with both GGDEF and EAL domains, and 9 with an HD-GYP domain (21). V. cholerae contains a few known or predicted c-di-GMP receptors: two riboswitches (53), five PilZ domain proteins (43), VpsT (31), and CdgG (6). C-di-GMP regulates virulence, motility, biofilm formation, and the smooth-to-rugose phase variation in V. cholerae (6, 8, 9, 12, 30, 33, 43, 45, 54, 56, 57). However, particular sets of proteins have not been matched to discrete cellular processes.Some of the DGCs and PDEs involved in regulating motility in V. cholerae have been identified: rocS and cdgG mutants exhibit a decrease in motility (45), while cdgD and cdgH mutants exhibit an increase in motility (6). In addition, VieA (PDE) positively regulates motility in the V. cholerae classical biotype but not in the El Tor biotype (7). AcgA (PDE) positively regulates motility at low concentrations of inorganic phosphate (42). In this study, we investigated the role of each putative gene encoding DGCs and PDEs in controlling cell motility. In addition to the already-characterized proteins CdgD, CdgH, and RocS, we identified two putative DGCs (CdgK and CdgL) that negatively control motility and a putative PDE (CdgJ) that positively controls motility. We further characterized CdgJ and showed that it functions as a PDE and inversely regulates motility and biofilm formation. Genetic interaction studies revealed that DGCs CdgD, CdgH, CdgL, and CdgK and PDE CdgJ form a c-di-GMP signaling network to control motility in V. cholerae.  相似文献   
99.

Introduction

Behcet''s disease (BD) is a multi-systemic disorder with muco-cutaneous, ocular, arthritic, vascular or central nervous system involvement. The role of γδ T cells is implicated in BD. The activation status of γδ T cells and their cytokine secretion against phosphoantigens are evaluated in BD.

Methods

NKG2A, NKG2C, NKG2D, CD16 and CCR7 molecules on γδ T cells were analyzed in 70 BD, 27 tuberculosis (TB) patients and 26 healthy controls (HC). Peripheral γδ T cells were expanded with a phosphoantigen (BrHPP) and IL-2, restimulated with BrHPP and a TLR3 ligand, and cytokine production was measured.

Results

γδ T cells were not increased in both BD and TB patients, but the proportions of TCRVδ2+ T cells were lower (58.9 and 50.7 vs. 71.7%, P = 0.04 and P = 0.005) compared to HC. Higher proportion of TCRVδ2+ T cells were CD16+ (26.2 and 33.9 vs. 16.6%, P = 0.02 and P = 0.001) and CCR7- (32.2 and 27.9 vs. 17.7%, P < 0.0001 and P = 0.014) in BD and TB patients compared to HC. NKG2C+ γδ+ T cells were relatively increased (0.5 and 0.6 vs. 0.3%, P = 0.008 and 0.018), whereas NKG2D positivity was decreased in patients with BD and TB (77.7 and 75.8 vs. 87.5%, P = 0.001 and 0.004). Expansion capacity of γδ T cells in BD and TB as well as production of IL-13, IFN-γ, granulocyte monocyte colony stimulating factor (GM-CSF), TNF-α, CCL4 and CCL5 in BD was lower compared to HC, when restimulated by TLR3 ligand and BrHPP.

Conclusion

The changes on γδ T cells of BD as well as TB patients implicate that γδ T cells have already been exposed to regulatory effects, which changed their activity. Lower cytokine response of γδ T cells implicates down modulation of these cells in BD.  相似文献   
100.
Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号