首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   8篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
31.
Macrocephaly-cutis marmorata telangiectatica congenita (M-CMTC) is characterized by macrocephaly, cutis marmorata, capillary malformations, toe syndactily, joint laxity and pre-natal overgrowth. Cerebral abnormalities might also be seen. We reported cerebral magnetic resonance imaging (MRI) findings of a case with M-CMTC, who had giant atrial septal aneurysm and atrial septal defect. Cerebral alterations determined by MRI were bilateral prominent lateral ventricles, bilateral cortical dysplasia, cavum septi pellucidum cyst and calvarial hemangioma. At 17th day of his life he suddenly developed cardiorespiratory arrest and died.  相似文献   
32.
Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60–500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires.  相似文献   
33.

Background  

Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge.  相似文献   
34.
Vibrio cholerae switches between free-living motile and surface-attached sessile lifestyles. Cyclic diguanylate (c-di-GMP) is a signaling molecule controlling such lifestyle changes. C-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain. We constructed in-frame deletions of all V. cholerae genes encoding proteins with GGDEF and/or EAL domains and screened mutants for altered motility phenotypes. Of 52 mutants tested, four mutants exhibited an increase in motility, while three mutants exhibited a decrease in motility. We further characterized one mutant lacking VC0137 (cdgJ), which encodes an EAL domain protein. Cellular c-di-GMP quantifications and in vitro enzymatic activity assays revealed that CdgJ functions as a PDE. The cdgJ mutant had reduced motility and exhibited a small decrease in flaA expression; however, it was able to produce a flagellum. This mutant had enhanced biofilm formation and vps gene expression compared to that of the wild type, indicating that CdgJ inversely regulates motility and biofilm formation. Genetic interaction analysis revealed that at least four DGCs, together with CdgJ, control motility in V. cholerae.Cyclic diguanylate (c-di-GMP) is a ubiquitous second messenger in bacteria. It is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain (46, 48, 50). The receptors of c-di-GMP, which can be proteins or RNAs (riboswitches), bind to c-di-GMP and subsequently transmit the signal to downstream targets (22). C-di-GMP signaling is predicted to occur via a common or localized c-di-GMP pool(s) through so-called c-di-GMP signaling modules harboring DGCs and PDEs, receptors, and targets that affect cellular function (22).C-di-GMP controls various cellular functions, including the transition between a planktonic lifestyle and biofilm lifestyle. In general, high concentrations of c-di-GMP promote the expression of adhesive matrix components and result in biofilm formation, while low concentrations of c-di-GMP result in altered motility upon changes in flagellar or pili function and/or production (reviewed in reference 25). C-di-GMP inversely regulates motility and biofilm formation by implementing control at different levels through gene expression or through posttranslational mechanisms (reviewed in reference 25).Vibrio cholerae, the causative agent of the disease cholera, uses c-di-GMP signaling to undergo a motile-to-sessile lifestyle switch that is important for both environmental and in vivo stages of the V. cholerae life cycle. The survival of the pathogen in both natural aquatic environments and during infection depends on the appropriate regulation of motility, surface attachment, and colonization factors (26). The V. cholerae genome encodes a total of 62 putative c-di-GMP metabolic enzymes: 31 with a GGDEF domain, 12 with an EAL domain, 10 with both GGDEF and EAL domains, and 9 with an HD-GYP domain (21). V. cholerae contains a few known or predicted c-di-GMP receptors: two riboswitches (53), five PilZ domain proteins (43), VpsT (31), and CdgG (6). C-di-GMP regulates virulence, motility, biofilm formation, and the smooth-to-rugose phase variation in V. cholerae (6, 8, 9, 12, 30, 33, 43, 45, 54, 56, 57). However, particular sets of proteins have not been matched to discrete cellular processes.Some of the DGCs and PDEs involved in regulating motility in V. cholerae have been identified: rocS and cdgG mutants exhibit a decrease in motility (45), while cdgD and cdgH mutants exhibit an increase in motility (6). In addition, VieA (PDE) positively regulates motility in the V. cholerae classical biotype but not in the El Tor biotype (7). AcgA (PDE) positively regulates motility at low concentrations of inorganic phosphate (42). In this study, we investigated the role of each putative gene encoding DGCs and PDEs in controlling cell motility. In addition to the already-characterized proteins CdgD, CdgH, and RocS, we identified two putative DGCs (CdgK and CdgL) that negatively control motility and a putative PDE (CdgJ) that positively controls motility. We further characterized CdgJ and showed that it functions as a PDE and inversely regulates motility and biofilm formation. Genetic interaction studies revealed that DGCs CdgD, CdgH, CdgL, and CdgK and PDE CdgJ form a c-di-GMP signaling network to control motility in V. cholerae.  相似文献   
35.

Background  

Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro.  相似文献   
36.
Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.  相似文献   
37.
A massive algal bloom of the dinoflagellate Noctiluca miliaris (green) was located in the Northern Arabian Sea by IRS-P4-2 (OCM-II) for microbiological studies, during two consecutive cruises of February-March 2009. Culturable bacterial load during bloom were ~2–3-fold higher in comparison to non-bloom waters and ranged from 3.20?×?105 to 6.84?×?105?cfu?ml?1. An analysis of the dominant heterotrophs associated with Noctiluca bloom resulted in phylogenetic and a detailed metabolic characterization of 70 bacterial isolates from an overlapping active and declining bloom phase location near north-central Arabian Sea. The active phase flora was dominated by Gram-positive forms (70.59 %), a majority of which belonged to Bacillus (35.29 %) of Firmicutes. As the bloom declined, Gram-negative forms (61.11 %) emerged dominant, and these belonged to a diverse γ-proteobacterial population consisting of Shewanella (16.67 %) and equal fractions of a Cobetia–Pseudomonas-Psychrobacter–Halomonas population (36.11 %). A Unifrac-based principal coordinate analysis of partial 16S rDNA sequences showed significant differences among the active and declining phase flora and also with reported endocytic flora of Noctiluca (red). A nonparametric multidimensional scaling (NMDS) of antibiogram helped differentiation among closely related strains. The organic matter synthesized by N. miliaris appears to be quickly utilized and remineralized as seen from the high efficiency of isolates to metabolize various complex and simple C/N substrates such as carbohydrates, proteins/amino acids, lipids, sulfide production from organic matter, and solubilize phosphates. The ability of a large fraction of these strains (50–41.67 %) to further aerobically denitrify indicates their potential for nitrogen removal from these high-organic microniches of the Noctiluca bloom in the Arabian Sea, also known for high denitrification activity. The results indicate that culturable euphotic bacterial associates of Noctiluca are likely to play a critical role in the biogeochemical ramifications of these unique seasonally emerging tropical open-water blooms of the Northern Arabian Sea.  相似文献   
38.
The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.  相似文献   
39.
Recently, BRCA1 germline mutations were found in a high proportion (14-34%) of patients with triple-negative breast cancer (TNBC). BRCA2 was either not analyzed or showed much lower mutation frequencies. Therefore, we screened a group of TNBC patients (n = 30) of white European descent for mutations in BRCA2 as well as in BRCA1. Cases were unselected for age of disease-onset (median age at breast cancer diagnosis was 58 years, ranging from 37 to 74 years), family history of cancer and BRCA1 and BRCA2 mutation status. Half of the patients (15/30) showed a family history of breast and/or ovarian cancer. A high frequency of deleterious germline mutations was observed in BRCA2 (5/30; 16.7%), and only one case showed a BRCA1 mutation (3.3%). Although the study group was small, these results point to BRCA2 mutations being important in TNBC.  相似文献   
40.

Background

Human induced pluripotent stem cells (IPSCs) have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell “rejuvenation.”

Methodology/Principal Findings

We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5), telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs). In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres.

Conclusions/Significance

While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号