首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   99篇
  2022年   8篇
  2021年   11篇
  2019年   9篇
  2017年   11篇
  2016年   19篇
  2015年   37篇
  2014年   35篇
  2013年   41篇
  2012年   58篇
  2011年   45篇
  2010年   34篇
  2009年   26篇
  2008年   30篇
  2007年   42篇
  2006年   28篇
  2005年   34篇
  2004年   36篇
  2003年   39篇
  2002年   21篇
  2001年   25篇
  2000年   26篇
  1999年   23篇
  1998年   9篇
  1997年   15篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1992年   11篇
  1991年   20篇
  1990年   18篇
  1989年   17篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   5篇
  1980年   7篇
  1979年   9篇
  1978年   13篇
  1977年   15篇
  1976年   7篇
  1975年   12篇
  1974年   6篇
  1973年   13篇
  1972年   11篇
  1970年   7篇
  1968年   5篇
  1967年   5篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
111.
A number of neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the intracellular deposition of fibrillar aggregates that contain a high proportion of alpha-synuclein (alphaS). The interaction with the membrane-water interface strongly modulates folding and aggregation of the protein. The present study investigates the lipid binding and the coil-helix transition of alphaS, using titration calorimetry, differential scanning calorimetry, and circular dichroism spectroscopy. Titration of the protein with small unilamellar vesicles composed of zwitterionic phospholipids below the chain melting temperature of the lipids yielded exceptionally large exothermic heat values. The sigmoidal titration curves were evaluated in terms of a simple model that assumes saturable binding sites at the vesicle surface. The cumulative heat release and the ellipticity were linearly correlated as a result of simultaneous binding and helix folding. There was no heat release and folding of alphaS in the presence of large unilamellar vesicles, indicating that a small radius of curvature is necessary for the alphaS-membrane interaction. The heat release and the negative heat capacity of the protein-vesicle interaction could not be attributed to the coil-helix transition of the protein alone. We speculate that binding and helix folding of alphaS depends on the presence of defect structures in the membrane-water interface, which in turn results in lipid ordering in the highly curved vesicular membranes. This will be discussed with regard to a possible role of the protein for the stabilization of synaptic vesicle membranes.  相似文献   
112.
Human beta-amyloid precursor protein cleaving enzyme (beta-secretase, or BACE) belongs to the aspartyl protease family, and is responsible for generating the N-terminus of beta-amyloid peptide (Abeta). BACE is a type I transmembrane glycoprotein with pre-, pro- and catalytic domains, a short transmembrane helix and a cytoplasmic region. In this study, a truncated form was engineered to produce the authentic catalytic domain of BACE in Trichoplusia ni (High 5) cells. The glycosylated BACE zymogen (proBACE) was secreted into the conditioned medium for facile purification by metal chelate and gel filtration chromatographies. The mature catalytic domain was obtained by a trans cleavage event under acidic conditions and crystallized in the absence of a bound inhibitor. A complete 3.4 A data set was collected on a single orthorhombic crystal with unit cell parameters a=74 A, b=130 A, c=134A. Successful molecular replacement shows two BACE molecules in the asymmetric unit.  相似文献   
113.
114.
Qiuju Yu  Peter Beyer 《FEBS letters》2012,586(19):3415-3420
Lycopene cyclases responsible for the formation of ε-ionone rings (LCYe) mark a plant-specific bifurcation of carotenogenesis. We investigated purified rice LCYe (OsLCYe) in a liposome-based biphasic assay system. OsLCYe depends on reduced flavin cofactors stabilizing a transient state formed during the non-redox cyclization reaction. In contrast to OsLCYb, OsLCYe produces predominantly monocyclic products and monocyclic carotene intermediates are not suitable substrates. Determination of the OsLCYe reaction specificities and the combined use of OsLCYb allow the characterization of the reaction sequence leading to heterocyclic carotenoids. It was also found that 5-cis-lycopene, which was thought to be decisive for ε-cyclization, was not involved in the reaction, with OsLCYe acting as an exclusion filter for this naturally occurring isomer.  相似文献   
115.
Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4?μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.  相似文献   
116.
This study aimed to ascertain the influence of turbidity and migration rate on the count accuracy and size determination of an automatic infrared fish counter. The effect of turbidity on enumerating silver perch (Bidyanus bidyanus) migration rates was insignificant when compared to the inability of the infrared counter to deal with large numbers of migrating fish. The infrared counter underestimated counts by 56–84% at moderate migration rates (12 fish h?1) and by 62–82% at the highest migration rate (120 fish h?1). When multiple fish were simultaneously passed through the counter, the software detected them as a single fish and overestimated fish length. Fish passed through the unit ranged from 340 to 520 mm but the infrared counter estimated the range to be 140–780 mm, with the lengths of a high proportion of individuals being underestimated. Most issues of inaccuracy appeared to be software‐related and could be overcome with further software development. Further assessment of the applicability of the unit to enumerate fish migration, at high migration rates, should then be considered.  相似文献   
117.
In vertebrates, most inner organs are asymmetrically arranged with respect to the main body axis [1]. Symmetry breakage in fish, amphibian, and mammalian embryos depends on cilia-driven leftward flow of extracellular fluid during neurulation [2-5]. Flow induces the asymmetric nodal cascade that governs asymmetric organ morphogenesis and placement [1, 6, 7]. In the frog Xenopus, an alternative laterality-generating mechanism involving asymmetric localization of serotonin at the 32-cell stage has been proposed [8]. However, no functional linkage between this early localization and flow at neurula stage has emerged. Here, we report that serotonin signaling is required for specification of the superficial mesoderm (SM), which gives rise to the ciliated gastrocoel roof plate (GRP) where flow occurs [5, 9]. Flow and asymmetry were lost in embryos in which serotonin signaling was downregulated. Serotonin, which we found uniformly distributed along the main body axes in the early embryo, was required for Wnt signaling, which provides the instructive signal to specify the GRP. Importantly, serotonin was required for Wnt-induced double-axis formation as well. Our data confirm flow as primary mechanism of symmetry breakage and suggest a general role of serotonin as competence factor for Wnt signaling during axis formation in Xenopus.  相似文献   
118.
Increasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3‐ and 18‐month‐old mice into 3‐ and 20‐month host animals. Transplantation with progenitors from older animals resulted in significantly shorter (P ≤ 0.0001) median survival in both 3‐month (37.5 vs. 83 days) and 20‐month (38 vs. 67 days) hosts, indicating that age‐dependent changes intrinsic to NSPCs rather than host animal age accounted for greater malignancy. Subsequent analyses revealed that increased invasiveness, genomic instability, resistance to therapeutic agents, and tolerance to hypoxic stress accompanied aging in transformed NSPCs. Greater tolerance to hypoxia in older progenitor cells, as evidenced by elevated HIF‐1 promoter reporter activity and hypoxia response gene (HRG) expression, mirrors the upregulation of HRGs in cohorts of older vs. younger glioma patients revealed by analysis of gene expression databases, suggesting that differential response to hypoxic stress may underlie age‐dependent differences in invasion, genomic instability, and treatment resistance. Our study provides strong evidence that progenitor cell aging is responsible for promoting the hallmarks of age‐dependent glioma malignancy and that consideration of progenitor aging will facilitate development of physiologically and clinically relevant animal models of human gliomas.  相似文献   
119.
120.
Study of physiological angiogenesis and associated signalling mechanisms in adult heart has been limited by the lack of a robust animal model. We investigated thyroid hormone‐induced sprouting angiogenesis and the underlying mechanism. Hypothyroidism was induced in C57BL/6J mice by feeding with propylthiouracil (PTU). One year of PTU treatment induced heart failure. Both 12 weeks‐ (young) and 1 year‐PTU (middle age) treatment caused a remarkable capillary rarefaction observed in capillary density. Three‐day Triiodothyronine (T3) treatment significantly induced cardiac capillary growth in hypothyroid mice. In cultured left ventricle (LV) tissues from PTU‐treated mice, T3 also induced robust sprouting angiogenesis where pericyte‐wrapped endothelial cells formed tubes. The in vitro T3 angiogenic response was similar in mice pre‐treated with PTU for periods ranging from 1.5 to 12 months. Besides bFGF and VEGF164, PDGF‐BB was the most robust angiogenic growth factor, which stimulated notable sprouting angiogenesis in cultured hypothyroid LV tissues with increasing potency, but had little effect on tissues from euthyroid mice. T3 treatment significantly increased PDGF receptor beta (PDGFR‐β) protein levels in hypothyroid heart. PDGFR inhibitors blocked the action of T3 both on sprouting angiogenesis in cultured LV tissue and on capillary growth in vivo. In addition, activation of Akt signalling mediated in T3‐induced angiogenesis was blocked by PDGFR inhibitor and neutralizing antibody. Our results suggest that hypothyroidism leads to cardiac microvascular impairment and rarefaction with increased sensitivity to angiogenic growth factors. T3‐induced cardiac sprouting angiogenesis in adult hypothyroid mice was associated with PDGF‐BB, PDGFR‐β and downstream activation of Akt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号