首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   9篇
  96篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   1篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
41.
Conventional methods for sample size calculation for population-based longitudinal studies tend to overestimate the statistical power by overlooking important determinants of the required sample size, such as the measurement errors and unmeasured etiological determinants, etc. In contrast, a simulation-based sample size calculation, if designed properly, allows these determinants to be taken into account and offers flexibility in accommodating complex study design features. The Canadian Longitudinal Study on Aging (CLSA) is a Canada-wide, 20-year follow-up study of 30,000 people between the ages of 45 and 85 years, with in-depth information collected every 3 years. A simulation study, based on an illness-death model, was conducted to: (1) investigate the statistical power profile of the CLSA to detect the effect of environmental and genetic risk factors, and their interaction on age-related chronic diseases; and (2) explore the design alternatives and implementation strategies for increasing the statistical power of population-based longitudinal studies in general. The results showed that the statistical power to identify the effect of environmental and genetic risk exposures, and their interaction on a disease was boosted when: (1) the prevalence of the risk exposures increased; (2) the disease of interest is relatively common in the population; and (3) risk exposures were measured accurately. In addition, the frequency of data collection every three years in the CLSA led to a slightly lower statistical power compared to the design assuming that participants underwent health monitoring continuously. The CLSA had sufficient power to detect a small (1<hazard ratio (HR)≤1.5) or moderate effect (1.5< HR≤2.0) of the environmental risk exposure, as long as the risk exposure and the disease of interest were not rare. It had enough power to detect a moderate or large (2.0<HR≤3.0) effect of the genetic risk exposure when the prevalence of the risk exposure was not very low (≥0.1) and the disease of interest was not rare (such as diabetes and dementia). The CLSA had enough power to detect a large effect of the gene-environment interaction only when both risk exposures had relatively high prevalence (0.2) and the disease of interest was very common (such as diabetes). The minimum detectable hazard ratios (MDHR) of the CLSA for the environmental and genetic risk exposures obtained from this simulation study were larger than those calculated according to the conventional sample size calculation method. For example, the MDHR for the environmental risk exposure was 1.15 according to the conventional method if the prevalence of the risk exposure was 0.1 and the disease of interest was dementia. In contrast, the MDHR was 1.61 if the same exposure was measured every 3 years with a misclassification rate of 0.1 according to this simulation study. With a given sample size, higher statistical power could be achieved by increasing the measuring frequency in participants with high risk of declining health status or changing risk exposures, and by increasing measurement accuracy of diseases and risk exposures. A properly designed simulation-based sample size calculation is superior to conventional methods when rigorous sample size calculation is necessary.  相似文献   
42.
43.
Experimental and Applied Acarology - Ticks will diminish productivity among farm animals and transmit zoonotic diseases. We conducted a study to identify tick species infesting slaughter bulls from...  相似文献   
44.
45.

Objectives

To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans.

Methods

We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients.

Results

Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis.

Conclusion

Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications.  相似文献   
46.
47.
Massive disruptions to a way of life, such as thosebrought on by widespread violence, terror, andgenocide, disorder the body as well as the socialorder. When they flee their homelands, refugees bringtheir experiences of violence and terror with them. Drawing on an ethnographic study of 40 Cambodianrefugees between the ages of 50 and 79 who sufferedfrom one or more chronic illnesses, we explore howrefugees who live with chronic illnesses and aredependent on government support were affected by thethreat of welfare reform. When welfare reformthreatened to cut Cambodian refugees' income, it poseda new crisis for those who were chronically in limboand placed further constraints on their lives. Through their narratives, Cambodian refugees enactedtheir bodily distress and resisted the threat ofwelfare reform. The story of threatened welfarereform in the U.S. and its possible consequences forrefugees is a story of quixotic U.S. politics,policies and antidotes for refugeeism gone awry.  相似文献   
48.
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive‐sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome‐linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E‐1, eIF(iso)4E‐2, novel cap‐binding protein‐1 (nCBP‐1), and nCBP‐2. Protein–protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9‐mediated genome editing was employed to generate ncbp‐1, ncbp‐2, and ncbp‐1/ncbp‐2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp‐1/ncbp‐2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild‐type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号