首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   30篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   20篇
  2017年   7篇
  2016年   16篇
  2015年   12篇
  2014年   30篇
  2013年   31篇
  2012年   28篇
  2011年   27篇
  2010年   16篇
  2009年   17篇
  2008年   20篇
  2007年   19篇
  2006年   17篇
  2005年   15篇
  2004年   12篇
  2003年   15篇
  2002年   5篇
  2001年   10篇
  2000年   23篇
  1999年   11篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   10篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1968年   1篇
  1956年   1篇
  1952年   1篇
排序方式: 共有459条查询结果,搜索用时 250 毫秒
111.
Manna P  Sinha M  Sil PC 《Amino acids》2009,36(3):417-428
The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2 (at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.  相似文献   
112.
The present study has been carried out to investigate the protective role of taurine against cadmium (Cd)-induced oxidative impairment in murine liver. Oral administration of cadmium chloride (CdCl2) at a dose of 4 mg/kg body weight for 6 days increased the accumulation of the Cd in the liver and diminished the liver weight to body weight ratio. The CdCl2 altered the levels of intracellular trace elements, cofactors of various metalloenzymes and increased the activities of serum marker enzymes related to liver dysfunction. In addition, Cd intoxication also attenuated intracellular antioxidant power, the activities of antioxidant enzymes as well as the levels of cellular metabolites. Moreover, level of hepatic metallothionein, lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of intracellular reactive oxygen species (ROS) and the activities of cytochrome P450s have been increased due to Cd toxicity. In addition to the oxidative impairments, Cd exposure caused hepatic cell death mainly via the necrotic pathway. Oral administration of taurine at a dose of 100 mg/kg body weight for 5 days prior to CdCl2 intoxication prevented the alterations of all the toxic-induced hepatic damages. Histological studies also supported the beneficial role of taurine against Cd-induced hepatic damages. Combining all, results suggest that taurine could protect hepatic tissues against Cd-induced oxidative stress probably through its antioxidant activity.  相似文献   
113.
Orthopoxviruses (OPVs) have recently received increasing attention because of their potential use in bioterrorism and the occurrence of zoonotic OPV outbreaks, highlighting the need for the development of safe and cost‐effective vaccines against smallpox and related viruses. In this respect, the production of subunit protein‐based vaccines in transgenic plants is an attractive approach. For this purpose, the A27L immunogenic protein of vaccinia virus was expressed in tobacco using stable transformation of the nuclear or plastid genome. The vaccinia virus protein was expressed in the stroma of transplastomic plants in soluble form and accumulated to about 18% of total soluble protein (equivalent to approximately 1.7 mg/g fresh weight). This level of A27L accumulation was 500‐fold higher than that in nuclear transformed plants, and did not decline during leaf development. Transplastomic plants showed a partial reduction in growth and were chlorotic, but reached maturity and set fertile seeds. Analysis by immunofluorescence microscopy indicated altered chlorophyll distribution. Chloroplast‐synthesized A27L formed oligomers, suggesting correct folding and quaternary structure, and was recognized by serum from a patient recently infected by a zoonotic OPV. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of OPV subunit vaccines.  相似文献   
114.
Diabetic mellitus, a chronic metabolic disorder, is one of the most important health problems in the world, especially in developing countries. Our earlier investigations reported the beneficial action of arjunolic acid (AA) against streptozotocin-mediated type 1 hyperglycemia. We have demonstrated that AA possesses protective roles against drug- and chemical- (environmental toxins) induced hepatotoxicity. Liver is the main organ of detoxification. The purpose of this study was to explore whether AA plays any protective role against hyperglycemic hepatic dysfunctions and, if so, what molecular pathways it utilizes for the mechanism of its protective action. In experimental rats, type 1 hyperglycemia was induced by streptozotocin. AA was administered orally at a dose of 20 mg/kg body wt both before and after diabetic induction. An insulin-treated group was included in the study as a positive control for type 1 diabetes. Hyperglycemia caused a loss in body weight, reduction in serum insulin level, and increased formation of HbA1C as well as advanced glycation end products (AGEs). Elevated levels of serum ALT and ALP, increased production of ROS and RNS, increased lipid peroxidation, increased 8-OHdG/2-dG ratio, and decreased GSH content and cellular antioxidant defense established the hyperglycemic liver dysfunction. Activation of iNOS, IκBα/NF-κB, and MAPK pathways as well as signals from mitochondria were found to be involved in initiating apoptotic cell death. Hyperglycemia caused overexpression of PARP, reduction in intracellular NAD as well as ATP level, and increased DNA fragmentation in the liver tissue of the diabetic animals. Results of immunofluorescence (using anti-caspase-3 and anti-Apaf-1 antibodies), DAPI/PI staining, and DNA ladder formation and information obtained from FACS analysis confirmed the apoptotic cell death in diabetic liver tissue. Histological studies also support the experimental findings. AA treatment prevented or ameliorated the diabetic liver complications and apoptotic cell death. The effectiveness of AA in preventing the formation of ROS, RNS, HbA1C, AGEs, and oxidative stress signaling cascades and protecting against PARP-mediated DNA fragmentation can speak about its potential uses for diabetic patients.  相似文献   
115.
Pancreatic ATP-sensitive potassium (KATP) channels control insulin secretion by coupling the excitability of the pancreatic β-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed KATP channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that KATP channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases KATP channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic β-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native KATP channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic β-cells, we propose that PKC-regulated KATP channel trafficking may play a role in the regulation of insulin secretion.  相似文献   
116.
117.

Background

Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway.

Methodology/Principal Findings

Rats were exposed to NaAsO2 (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO2 (10 µM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO2 exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis.

Conclusions/Significance

Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCδ-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning.  相似文献   
118.
Hydroxytyrosol, the major representative phenolic compound of virgin olive oil, is a dietary component. Its possible protective effect on hydrogen peroxide (H(2)O(2))-induced oxidative alterations was investigated in human erythrocytes. Cells were pretreated with micromolar hydroxytyrosol concentrations and then exposed to H(2)O(2) over different time intervals. Subsequently, erythrocytes were analyzed for oxidative hemolysis and lipid peroxidation. Our data demonstrate that hydroxytyrosol prevents both oxidative alterations, therefore, providing protection against peroxide-induced cytotoxicity in erythrocytes. The effect of oxidative stress on erythrocyte membrane transport systems, as well as the protective role of hydroxytyrosol, also were investigated in conditions of nonhemolytic mild H(2)O(2) treatment. Under these experimental conditions, a marked decrease in the energy-dependent methionine and leucine transport is observable; this alteration is quantitatively prevented by hydroxytyrosol pretreatment. On the other hand, the energy-independent glucose transport is not affected by the oxidative treatment. The reported data give new experimental support to the hypothesis of a protective role played by nonvitamin antioxidant components of virgin olive oil on oxidative stress in human systems.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号