首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   40篇
  511篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   7篇
  2015年   14篇
  2014年   12篇
  2013年   21篇
  2012年   33篇
  2011年   29篇
  2010年   19篇
  2009年   17篇
  2008年   26篇
  2007年   26篇
  2006年   24篇
  2005年   25篇
  2004年   20篇
  2003年   21篇
  2002年   24篇
  2001年   11篇
  2000年   15篇
  1999年   9篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1975年   2篇
  1973年   3篇
  1969年   2篇
  1903年   2篇
  1887年   1篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
21.
We describe the first example of unstable gene amplification consisting of linear extrachromosomal DNAs in drug-resistant eukaryotic cells. alpha-Difluoromethylornithine (DFMO)-resistant Leishmania donovani with an amplified ornithine decarboxylase (ODC) gene copy number contained two new extrachromosomal DNAs, both present in 10 to 20 copies. One of these was a 140-kb linear DNA (ODC140-L) on which all of the amplified copies of the odc gene were located. The second was a 70-kb circular DNA (ODC70-C) containing an inverted repeat but lacking the odc gene. Both ODC140-L and ODC70-C were derived from a preexisting wild-type chromosome, probably by a conservative amplification mechanism. Both elements were unstable in the absence of DFMO, and their disappearance coincided with a decrease in ODC activity and an increase in DFMO growth sensitivity. These results suggest the possibility that ODC70-C may play a role in DFMO resistance. These data expand the diversity of known amplification mechanisms in eukaryotes to include the simultaneous unstable amplification of both linear and circular DNAs. Further characterization of these molecules will provide insights into the molecular mechanisms underlying gene amplification, including the ability of linear amplified DNAs to acquire telomeres and the determinants of chromosomal stability.  相似文献   
22.
The functional units of immune response are lymphocyte clones. Analysis of lymphocyte life span in vivo shows that the overall turnover of CD4 and CD8 lymphocytes does not differ greatly. Recently, molecular methods have been developed which allow a global analysis of T-cell clones responding to an antigen in vivo. We have used a sensitive, modified heteroduplex analysis to follow T-cell clones responding to Epstein-Barr virus in acute infectious mononucleosis (AIM). Strikingly, all the many large clones detected in freshly isolated AIM blood were found within the CD8 fraction. CD4 clonal populations responding to the soluble recall antigen tetanus toxoid could only be detected after in vitro re-stimulation. These data imply that CD4 responses may be more polyclonal than those of CD8 cells and that the size of CD4 clones is more tightly regulated. Several molecular mechanisms may contribute to this. Up-regulation of telomerase allows very large expansions of CD8 cells to occur without exhaustion of proliferative capacity.  相似文献   
23.
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers' previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD = 4.24) and with parameters of renal function on chromosome 5p (maximum LOD = 3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits.  相似文献   
24.
25.

Introduction

C-peptide and insulin measurements in blood provide useful information regarding endogenous insulin secretion. Conflicting evidence on sample stability and handling procedures continue to limit the widespread clinical use of these tests. We assessed the factors that altered the stability of insulin and C-peptide in blood.

Methods

We investigated the impact of preservative type, time to centrifugation, storage conditions and duration of storage on the stability of C-peptide and insulin on three different analytical platforms.

Results

C-peptide was stable for at least 24 hours at room temperature in both centrifuged and whole blood collected in K+-EDTA and serum gel tubes, with the exception of whole blood serum gel, which decreased to 78% of baseline at 24 hours, (p = 0.008). Insulin was stable at room temperature for 24 hours in both centrifuged and whole blood collected in K+-EDTA tubes. In contrast insulin levels decreased in serum gel tubes both centrifuged and whole blood (66% of baseline, p = 0.01 and 76% of baseline p = 0.01, by 24 hours respectively). C-peptide and insulin remained stable after 6 freeze-thaw cycles.

Conclusions

The stability of C-peptide and insulin in whole blood K+-EDTA tubes negates the need to conform to strict sample handling procedures for these assays, greatly increasing their clinical utility.  相似文献   
26.
27.

Background

The high affinity tyrosine kinase receptor, TrkB, is the primary receptor for brain derived neurotrophic factor (BDNF) and plays an important role in development, maintenance and plasticity of the striatal output medium size spiny neuron. The striatal BDNF/TrkB system is thereby implicated in many physiologic and pathophysiologic processes, the latter including mood disorders, addiction, and Huntington’s disease. We crossed a mouse harboring a transgene directing cre-recombinase expression primarily to postnatal, dorsal striatal medium spiny neurons, to a mouse containing a floxed TrkB allele (fB) mouse designed for deletion of TrkB to determine its role in the adult striatum.

Results

We found that there were sexually dimorphic alterations in behaviors in response to stressful situations and drugs of abuse. Significant sex and/or genotype differences were found in the forced swim test of depression-like behaviors, anxiety-like behaviors on the elevated plus maze, and cocaine conditioned reward. Microarray analysis of dorsal striatum revealed significant dysregulation in individual and groups of genes that may contribute to the observed behavioral responses and in some cases, represent previously unidentified downstream targets of TrkB.

Conclusions

The data point to a set of behaviors and changes in gene expression following postnatal deletion of TrkB in the dorsal striatum distinct from those in other brain regions.
  相似文献   
28.
The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(-) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(-) and BLOC-1(-) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.  相似文献   
29.
30.
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号