首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   64篇
  2019年   5篇
  2018年   10篇
  2015年   4篇
  2014年   13篇
  2013年   10篇
  2012年   21篇
  2011年   17篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   12篇
  2006年   13篇
  2005年   21篇
  2004年   15篇
  2003年   18篇
  2002年   18篇
  2001年   21篇
  2000年   13篇
  1999年   13篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   11篇
  1978年   6篇
  1977年   11篇
  1976年   6篇
  1975年   16篇
  1974年   8篇
  1973年   7篇
  1972年   6篇
  1971年   5篇
  1970年   4篇
  1969年   4篇
  1967年   6篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
91.
M. A. Lafraie  A. Betz 《Planta》1985,163(1):38-42
Cyanidium caldarium cells kept anaerobically in the dark have no detectable gas exchange and form exclusively d-(-)-lactate at the expense of their starch content. The addition of acetate enhances both starch breakdown and lactate accumulation by a factor of two. During prolonged anaerobiosis Cyanidium is able to keep its energy charge at a low, but fairly constant level. The adenylate-kinase equilibrium, however, undergoes considerable changes, indicative of a regulatory mechanism which maintains a high energy charge particularly by accumlating AMP instead of ADP.  相似文献   
92.
Euglena gracilis (1224-5/9) contains phosphoenolpyruvate carboxykinase when grown autotrophic with CO2 in the light. Its yield is higher when an additional carbon source like glucose has been added. The enzyme is lacking in cells provided with CO2 alone and kept in the dark, whereas highest yields result if both glucose and CO2 are provided together in the dark. The enzyme was purified by ammonium sulfate precipitation, gel filtration on Sephacryl S-300 and affinity chromatography on GMP-Sepharose. The latter step was most effective to protect the enzyme from inactivation. Its homogeneity was tested electrophoretically and immunologically. Enzymes from autotrophic and heterotrophically grown cells have identical pH optima and similar isoelectric points. The molecular weight was different: 761,000 for the enzyme from autotrophic and 550,000 for that from heterotrophic cells as determined by gel filtration. The subunit molecular weight of both enzymes is nearly the same. The kinetic data of the enzymes are slightly different. Glycolytic and tricarboxylic acid cycle intermediates are of limited influence on enzyme activity and inhibitory in unphysiological high concentrations. From Ouchterlony double immunodiffusion and enzyme-linked immunosorbent assay, it is evident that the enzyme is localized in the cytosol. With the latter quantification test the phosphoenolpyruvate carboxykinase protein content was found 10 times higher in heterotrophically grown cells than when cultivated under autotrophic conditions.  相似文献   
93.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1991,30(41):9848-9853
The role of interactions involving C-terminal nonpolar residues of hirudin in the formation of the thrombin-hirudin complex has been investigated by site-directed mutagenesis. The residues Phe56, Pro60, and Tyr63 of hirudin were replaced by a number of different amino acids, and the kinetics of the inhibition of thrombin by the mutant proteins were determined. Phe56 could be replaced by aromatic amino acids without significant loss in binding energy. While substitution of Phe56 by alanine decreased the binding energy (delta G degrees b by only 1.9 kJ mol-1, replacement of this residue by amino acids with branched side chains caused larger decreases in delta G degrees b. For example, the mutant Phe56----Val displayed a decrease in delta G degrees b of 10.5 kJ mol-1. Substitution of Pro60 by alanine or glycine resulted in a decrease in delta G degrees b of about 6 kJ mol-1. Tyr63 could be replaced by phenylalanine without any loss in binding energy, and replacement of this residue by alanine caused a decrease of 2.2 kJ mol-1 in delta G degrees b. Substitution of Tyr63 by residues with branched side chains resulted in smaller decreases in delta G degrees b than those seen with the corresponding substitutions of Phe56; for example, the mutant Tyr63----Val showed a decrease in binding energy of 5.1 kJ mol-1. The effects of the mutations are discussed in terms of the crystal structure of the thrombin-hirudin complex.  相似文献   
94.
The inhibitory glycine receptor (GlyR) is a ligand-gated chloride channel protein that occurs in developmentally regulated isoforms in the vertebrate central nervous system. Monoclonal antibodies (mAbs) against the GlyR distinguish neonatal and adult GlyR proteins by identifying distinct alpha subunit variants within these receptor isoforms. Here, bacterially expressed fusion proteins of the rat GlyR alpha 1 subunit were used to localize the major antigenic epitopes of this protein within its N-terminal 105 amino acids. Synthetic peptides allowed further fine mapping of two mAb binding domains. MAb 2b, specific for the adult alpha 1 subunit, bound to a peptide corresponding to amino acids 1-10, whereas mAb 4a, which recognizes both neonatal and adult GlyR isoforms, reacted with a peptide representing residues 96-105 of the alpha 1 polypeptide. These data define unique and common antigenic epitopes on GlyR alpha subunit variants.  相似文献   
95.
The inhibitory glycine receptor (GlyR) of rat spinal cord contains an intrinsic transmembrane channel mediating agonist-gated anion flux. Here, synthetic peptides modelled after the predicted transmembrane domains M2 and M4 of its ligand-binding subunit were incorporated into lipid vesicle membranes and black lipid bilayers to analyze their channel forming capabilities. Both types of peptides prohibited the establishment of, or dissipated, preexisting transmembrane potentials in the vesicle system. Incorporation of peptide M2 into the black lipid bilayer elicited randomly gated single channel events with various conductance states and life-times. Peptide M4 increased the conductance of the bilayer without producing single channels. Exchange of the terminal arginine residues of peptide M2 by glutamate resulted in a significant shift towards cation selectivity of the respective channels as compared to peptide M2. In conclusion, the peptide channels observed differed significantly from native GlyR in both conductivity and ion-selectivity indicating that individual synthetic transmembrane segments are not sufficient to mimic a channel protein composed of subunits with multiple transmembrane segments.  相似文献   
96.
The similarity of two nucleotide sequences is often expressed in terms of evolutionary distance, a measure of the amount of change needed to transform one sequence into the other. Given two sequences with a small distance between them, can their similarity be explained by their base composition alone? The nucleotide order of these sequences contributes to their similarity if the distance is much smaller than their average permutation distance, which is obtained by calculating the distances for many random permutations of these sequences. To determine whether their similarity can be explained by their dinucleotide and codon usage, random sequences must be chosen from the set of permuted sequences that preserve dinucleotide and codon usage. The problem of choosing random dinucleotide and codon-preserving permutations can be expressed in the language of graph theory as the problem of generating random Eulerian walks on a directed multigraph. An efficient algorithm for generating such walks is described. This algorithm can be used to choose random sequence permutations that preserve (1) dinucleotide usage, (2) dinucleotide and trinucleotide usage, or (3) dinucleotide and codon usage. For example, the similarity of two 60-nucleotide DNA segments from the human beta-1 interferon gene (nucleotides 196-255 and 499-558) is not just the result of their nonrandom dinucleotide and codon usage.   相似文献   
97.
Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The Nedd4-1, an E3 ubiquitin ligase, is characterized by two covalent binding sites, of which catalytic Cyscat and allosteric Cysallo are enclosed. This enzyme has demonstrated inhibition at both the above-mentioned binding sites; however, a detailed molecular understanding of the structural mechanism of inhibition upon Cyscat and Cysallo binding remains vague. This prompted us to provide the first account of investigating the preferential covalent binding mode and the underlying structural and molecular dynamic implications. Based on the molecular dynamic analyses, it was evident that although both catalytic and allosteric covalent binding led to greater stability of the enzyme, a preferential covalent mechanism of inhibition was seen in the allosteric-targeted system. This was supported by a more favorable binding energy in the allosteric site compared to the catalytic site, in addition to the larger number of residue interactions and stabilizing hydrogen bonds occurring in the allosteric covalent bound complex. The fundamental dynamic analysis presented in this report compliments, as well as adds to previous experimental findings, thus leading to a crucial understanding of the structural mechanism by which Nedd4-1 is inhibited. The findings from this study may assist in the design of more target-specific Nedd4-1 covalent inhibitors exploring the surface-exposed cysteine residues.  相似文献   
98.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   
99.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   
100.
W Hoch  H Betz  C M Becker 《Neuron》1989,3(3):339-348
Expression of the inhibitory glycine receptor complex was investigated in primary cultures of fetal mouse spinal cord using sensitive immunomethods. In these cells, glycine receptor is predominantly of the neonatal isoform characterized by a low affinity for the antagonist strychnine. It contains a ligand binding subunit that differs from that of the adult receptor in antigenic epitopes and apparent molecular weight. Whereas in vivo the neonatal receptor isoform is completely replaced by the adult isoform within 3 weeks after birth, this exchange of subtypes is not seen in culture. The increased expression of the cytoplasmic glycine receptor-associated polypeptide of 93 kd occurring after birth is also seen under culture conditions. Purification of glycine receptor from cultures yielded polypeptides of 49 kd and 93 kd, suggesting that the membrane-spanning core of the neonatal receptor may be a homooligomer composed of 49 kd subunits. About half of the 49 kd subunit is cleaved by trypsinization of the cultures, indicating a predominant cell surface localization of the receptor. Pulse-labeling experiments revealed the 49 kd subunit to be a metabolically stable glycoprotein (half-life approximately 2 days). After its synthesis, a transition time of 30-45 min is required for acquisition of a strychnine binding conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号