首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   64篇
  542篇
  2019年   5篇
  2018年   10篇
  2015年   4篇
  2014年   13篇
  2013年   10篇
  2012年   21篇
  2011年   17篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   12篇
  2006年   13篇
  2005年   21篇
  2004年   15篇
  2003年   18篇
  2002年   18篇
  2001年   21篇
  2000年   13篇
  1999年   13篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   11篇
  1978年   6篇
  1977年   11篇
  1976年   6篇
  1975年   16篇
  1974年   8篇
  1973年   7篇
  1972年   6篇
  1971年   5篇
  1970年   4篇
  1969年   4篇
  1967年   6篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
41.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   
42.
43.
44.
We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-beta-glucuronidase fusion construct, beta-glucuronidase activity increased rapidly at the beginning of the O(3) exposure and had a spatial distribution resembling the pattern of extracellular H(2)O(2) production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H(2)O(2) production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H(2)O(2) production, in regulating the spread of cell death.  相似文献   
45.
Biochemical investigations have identified putative enzymatic pathways for the synthesis and metabolism of endogenous cannabinoids. Anandamide amidase is an enzyme that metabolizes anandamide into arachadonic acid and ethanolamine. Using in vitro methods, various inhibitors of amidase have been identified. The present studies were undertaken to determine if the amidase inhibitor AM 374 could enhance the effects of intraperitoneal (IP) injections of anandamide. Three studies were conducted to investigate the effects of various drug treatments on fixed ratio 5 operant lever pressing for food reinforcement. In the first study, the effects of different doses of anandamide were assessed, and it was demonstrated that 5.0 and 10.0 mg/kg anandamide IP significantly suppressed lever pressing, while 2.5 mg/kg produced very little effect. The second study tested the effects of intraventricular (ICV) injections of AM 374, and it was observed that doses up to 10.0, 20.0 and 40 microg AM 374 had no significant effect upon lever pressing. The third study investigated the combined effect of AM374 with a low dose of anandamide. Rats received two drug injections: one ICV and one IP. Four different drug treatments were assessed: 1) ICV vehicle + IP vehicle, 2) ICV vehicle + 2.5 mg/kg anandamide IP, 3) ICV 20.0 microg AM 374 + IP vehicle, and 4) ICV 20 microg AM 374 + 2.5 mg/kg anandamide IP. Combined administration of AM 374 plus anandamide led to a significant decrease in lever pressing compared to either AM374 or anandamide administered alone. Observations of the animals treated with the combination of AM374 plus anandamide indicated that the drug combination resulted in motor slowing, which is consistent with the notion that stimulation of cannabinoid receptors produced a motor deficit that interfered with lever pressing. Although AM374 produced no effect on its own, this amidase inhibitor did enhance the behavioral effect of a low dose of anandamide. These results are consistent with the notion that AM 374 inhibited the enzymatic breakdown of exogenously injected anandamide. This type of procedure can be used to assess a variety of different compounds for their ability to inhibit cannabinoid metabolism.  相似文献   
46.
Focussing on the blood-feeding reduviid Rhodnius prolixus, we investigated the structure and function of the hypopharynx in (1) conducting the saliva towards the mouthparts and (2) bringing together the salivary pump and the stylets to ensure the difficult task of supplying the two closed antidromic streams of blood and saliva, while allowing the mouthparts to be moved forth and back during the feeding process. The distal apex of the hypopharynx forms a needle-like structure that is X-shaped in cross section. It arranges the interlocking of the maxillae in a manner resembling the fixed slider of a zip-lock. Further proximal, the hypopharynx extends into the maxillary food channel as a wide tongue. The salivary pump possesses two separate efferent ducts. The dorsal duct originates in the retrograde angle of the cupula (part of the salivarium) and conducts saliva directly into the maxillary salivary channel. The ventral duct originates at the distal opening of the cupula. It extends into a bag, the distal opening of which can be closed by a ventral bolster-like cuticle and opened by muscles. We show for the first time for heteropteran mouthparts that the saliva is not exclusively discharged into the maxillary salivary channel (via the dorsal efferent duct of the salivary pump), but that a large amount of saliva directly flows into the tube of the labium (via the ventral efferent duct of the salivary pump), which encloses the piercing stylets. However, within a short section, saliva may also pass from the ventral salivary duct into the maxillary salivary channel. Similar double salivary efferent ducts are present in the reduviids Triatoma dimidiata, T. infestans, Dipetalogaster maxima, Panstrongylus megistus, in the pyrrhocorid Pyrrhocoris apterus, and in the pentatomid Troilus luridus. It might thus be a more common feature of the Heteroptera.  相似文献   
47.
Hereditary hyperekplexia is a neuromotor disorder characterized by exaggerated startle reflexes and muscle stiffness in the neonate. The disease has been associated with mutations in the glycine receptor subunit genes GLRA1 and GLRB. Here, we describe mutations within the neuronal glycine transporter 2 gene (GLYT2, or SLC6A5, ) of hyperekplexia patients, whose symptoms cannot be attributed to glycine receptor mutations. One of the GLYT2 mutations identified causes truncation of the transporter protein and a complete loss of transport function. Our results are consistent with GLYT2 being a disease gene in human hyperekplexia.  相似文献   
48.
Synaptic glycine receptors (GlyRs) are hetero-pentameric chloride channels composed of α and β subunits, which are activated by agonist binding at subunit interfaces. To examine the pharmacological properties of each potential agonist-binding site, we substituted residues of the GlyR α(1) subunit by the corresponding residues of the β subunit, as deduced from sequence alignment and homology modeling based on the recently published crystal structure of the glutamate-gated chloride channel GluCl. These exchange substitutions allowed us to reproduce the βα, αβ and ββ subunit interfaces present in synaptic heteromeric GlyRs by generating recombinant homomeric receptors. When the engineered α(1) GlyR mutants were expressed in Xenopus oocytes, all subunit interface combinations were found to form functional agonist-binding sites as revealed by voltage clamp recording. The ββ-binding site displayed the most distinct pharmacological profile towards a range of agonists and modulators tested, indicating that it might be selectively targeted to modulate the activity of synaptic GlyRs. The mutational approach described here should be generally applicable to heteromeric ligand-gated ion channels composed of homologous subunits and facilitate screening efforts aimed at targeting inter-subunit specific binding sites.  相似文献   
49.
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.  相似文献   
50.
Genetically tractable model plants offer the possibility of defining the plant O3 response at the molecular level. To this end, we have isolated a collection of ozone (O3)-sensitive mutants of Arabidopsis thaliana . Mutant phenotypes and genetics were characterized. Additionally, parameters associated with O3 sensitivity were analysed, including stomatal conductance, sensitivity to and accumulation of reactive oxygen species, antioxidants, stress gene-expression and the accumulation of stress hormones. Each mutant has a unique phenotypic profile, with O3 sensitivity caused by a unique set of alterations in these systems. O3 sensitivity in these mutants is not caused by gross deficiencies in the antioxidant pathways tested here. The rcd3 mutant exhibits misregulated stomata. All mutants exhibited changes in stress hormones consistent with the known hormonal roles in defence and cell death regulation. One mutant, dubbed re-8 , is an allele of the classic leaf development mutant reticulata and exhibits phenotypes dependent on light conditions. This study shows that O3 sensitivity can be determined by deficiencies in multiple interacting plant systems and provides genetic evidence linking these systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号