首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   6篇
  194篇
  2023年   3篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   12篇
  2014年   9篇
  2013年   8篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   12篇
  2008年   18篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  1997年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1975年   5篇
排序方式: 共有194条查询结果,搜索用时 0 毫秒
11.
MOTIVATION: As the scientific curiosity in genome studies shifts toward identification of functions of the genomes in large scale, data produced about cellular processes at molecular level has been accumulating with an accelerating rate. In this regard, it is essential to be able to store, integrate, access and analyze this data effectively with the help of software tools. Clearly this requires a strong ontology that is intuitive, comprehensive and uncomplicated. RESULTS: We define an ontology for an intuitive, comprehensive and uncomplicated representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information via collaboration, and supports manipulation of the stored data. In addition, it facilitates concurrent modifications to the data while maintaining its validity and consistency. Furthermore, novel structures for representation of multiple levels of abstraction for pathways and homologies is provided. Lastly, our ontology supports efficient querying of large amounts of data. We have also developed a software tool named pathway analysis tool for integration and knowledge acquisition (PATIKA) providing an integrated, multi-user environment for visualizing and manipulating network of cellular events. PATIKA implements the basics of our ontology.  相似文献   
12.
13.
Previous studies have revealed the activation of neutral sphingomyelinase (N-SMase)/ceramide pathway in hepatic tissue following warm liver ischemia reperfusion (IR) injury. Excessive ceramide accumulation is known to potentiate apoptotic stimuli and a link between apoptosis and endoplasmic reticulum (ER) stress has been established in hepatic IR injury. Thus, this study determined the role of selective N-SMase inhibition on ER stress and apoptotic markers in a rat model of liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60?min, followed by 60?min reperfusion. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reactions monitoring (MRM) method using ultrafast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared with controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. A significant increase was observed in ER stress markers C/EBP-homologous protein (CHOP) and 78?kDa glucose-regulated protein (GRP78) in IR injury, which was not significantly altered by N-SMase inhibition. Inhibition of N-SMase caused a significant reduction in phospho-NF-kB levels, hepatic TUNEL staining, cytosolic cytochrome c, and caspase-3, -8, and -9 activities which were significantly increased in IR injury. Data herein confirm the role of ceramide in increased apoptotic cell death and highlight the protective effect of N-SMase inhibition in down-regulation of apoptotic stimuli responses occurring in hepatic IR injury.  相似文献   
14.
Glutathione reductase [GR, E.C.1.8.1.7] catalyses NADPH dependent reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Thus, it is the crucial enzyme to maintain high [GSH]/[GSSG] ratio and physiological redox status in cells. Kidney and liver tissues were considered as a rich source of GR. In this study, rat kidney GR was purified and some of its properties were investigated. The enzyme was purified 2,356 fold with a yield of 16% by using heat-denaturation and Sephadex G25 gel filtration, 2′,5′-ADP Agarose 4B, PBE94 column chromatographies. The purified enzyme had a specific activity (Vm) of 250 U/mg protein and the ratio of absorbances at wavelengths of A 273/A 463, A 280/A 460, A 365/A 460, and A 379/A 463, were 7.1, 6.8, 1.2 and 1.0, respectively. Each mol of GR subunit bound 0.97 mol of FAD. NADH was used as a coenzyme by rat kidney GR but with a lower efficiency (32.7%) than NADPH. Its subunit molecular weight was estimated as 53 kDa. An optimum pH of 6.5 and optimum temperature of 65 °C were found for rat kidney GR. Its activation energy (Ea) and temperature coefficient (Q10) were calculated as 7.02 kcal/mol and 1.42, respectively. The Km(NADPH) and kcat/Km (NADPH) values were found to be 15.3 ± 1.4 μM and 1.68 × 107 M−1 s−1 for the concentration range of 10-200 μM NADPH and when GSSG is the variable substrate, the Km(GSSG) and the kcat/Km(GSSG) values of 53.1 ± 3.4 μM and 4.85 × 106 M−1 s−1 were calculated for the concentration range of 20–1,200 μM GSSG.  相似文献   
15.
Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.  相似文献   
16.
17.
18.
BackgroundLeprosy is a chronic bacterial infection caused by Mycobacterium leprae, which may lead to physical disability, stigma, and discrimination. The chronicity of the disease and disabilities are the prime contributors to the disease burden of leprosy. The current figures of the disease burden in the 2017 global burden of disease study, however, are considered to be under-estimated. In this study, we aimed to systematically review the literature and perform individual patient data meta-analysis to estimate new disability weights for leprosy, using Health-Related Quality of Life (HRQOL) data.Methodology/principal findingsThe search strategy included all major databases with no restriction on language, setting, study design, or year of publication. Studies on human populations that have been affected by leprosy and recorded the HRQOL with the Short form tool, were included. A consortium was formed with authors who could share the anonymous individual-level data of their study. Mean disability weight estimates, sorted by the grade of leprosy disability as defined by WHO, were estimated for individual participant data and pooled using multivariate random-effects meta-analysis. Eight out of 14 studies from the review were included in the meta-analysis due to the availability of individual-level data (667 individuals). The overall estimated disability weight for grade 2 disability was 0.26 (95%CI: 0.18–0.34). For grade 1 disability the estimated weight was 0.19 (95%CI: 0.13–0.26) and for grade 0 disability it was 0.13 (95%CI: 0.06–0.19). The revised disability weight for grade 2 leprosy disability is four times higher than the published GBD 2017 weights for leprosy and the grade 1 disability weight is nearly twenty times higher.Conclusions/significanceThe global burden of leprosy is grossly underestimated. Revision of the current disability weights and inclusion of disability caused in individuals with grade 0 leprosy disability will contribute towards a more precise estimation of the global burden of leprosy.  相似文献   
19.
During shock, prognosis of a patient depends largely on intestinal barrier function. The potency of gut epithelium to represent an obstacle to toxins is determined by the blood supply. All established methods of mucosal function determination necessitate the functional involvement of bloodstream. Microdialysis allows monitoring of extracellular substances in the gut submucosa, but its potential use for gut barrier integrity assessment is unknown. Twelve rats underwent perfusion of the descending colon either with 20 % ethanol or control medium (vehicle). Both media contained equal amounts of a radioactive tracer substance ((51)Cr-EDTA). Mucosal permeability for (51)Cr-EDTA was assessed by microdialysate to luminal perfusate activity ratios. Sampling was performed using the colon submucosal microdialysis technique. The group subjected to ethanol treatment had profound macro- and microscopical alterations in perfused colonic segment associated with a significant increase in tracer permeability during ethanol exposure (2.354+/-0.298 % for ethanol as opposed to 0.209+/-0.102 % for control group, p 0.01), which remained elevated for 60 min after cessation of ethanol administration (3.352+/-0.188 % for ethanol compared to 0.140+/-0.0838 % for the control group, p 0.001). Submucosal microdialysis with radioactive tracer substance can be considered a feasible and advantageous alternative of gut barrier function estimation. Parallel monitoring of local tissue chemistry with this method remains a challenge in the future.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号