首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293073篇
  免费   34523篇
  国内免费   152篇
  327748篇
  2018年   2399篇
  2016年   3087篇
  2015年   4039篇
  2014年   4916篇
  2013年   6740篇
  2012年   7700篇
  2011年   7908篇
  2010年   5202篇
  2009年   5030篇
  2008年   7144篇
  2007年   7323篇
  2006年   7200篇
  2005年   6920篇
  2004年   6785篇
  2003年   6616篇
  2002年   6464篇
  2001年   17258篇
  2000年   17445篇
  1999年   13301篇
  1998年   3861篇
  1997年   4129篇
  1996年   3851篇
  1995年   3488篇
  1994年   3466篇
  1993年   3541篇
  1992年   10386篇
  1991年   10320篇
  1990年   9804篇
  1989年   9636篇
  1988年   8990篇
  1987年   8356篇
  1986年   7556篇
  1985年   7407篇
  1984年   5824篇
  1983年   5075篇
  1982年   3612篇
  1981年   3179篇
  1980年   3030篇
  1979年   5348篇
  1978年   4114篇
  1977年   3750篇
  1976年   3299篇
  1975年   3778篇
  1974年   3947篇
  1973年   3893篇
  1972年   3421篇
  1971年   3184篇
  1970年   2823篇
  1969年   2741篇
  1968年   2412篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
Uncoupling protein 3L, uncoupling protein 1 and the mitochondrial oxoglutarate carrier were expressed in Saccharomyces cerevisae. Effects on different parameters related to the energy expenditure were studied. Both uncoupling protein 3L and uncoupling protein 1 reduced the growth rate by 49% and 32% and increased the whole yeast O2 consumption by 31% and 19%, respectively. In isolated mitochondria, uncoupling protein 1 increased the state 4 respiration by 1.8-fold, while uncoupling protein 3L increased the state 4 respiration by 1.2-fold. Interestingly, mutant uncoupling protein 1 carrying the H145Q and H147N mutations, previously shown to markedly decrease the H+ transport activity of uncoupling protein 1 when assessed using a proteoliposome system (Bienengraeber et al. (1998) Biochem. 37, 3-8), uncoupled the mitochondrial respiration to almost the same degree as wild-type uncoupling protein 1. Thus, absence of this histidine pair in uncoupling protein 2 and uncoupling protein 3 does not by itself rule out the possibility that these carriers have an uncoupling function. The oxoglutarate carrier had no effect on any of the studied parameters. In summary, a discordance exists between the magnitude of effects of uncoupling protein 3L and uncoupling protein 1 in whole yeast versus isolated mitochondria, with uncoupling protein 3L having greater effects in whole yeast and a smaller effect on the state 4 respiration in isolated mitochondria. These findings suggest that uncoupling protein 3L, like uncoupling protein 1, has an uncoupling activity. However, the mechanism of action and/or regulation of the activity of uncoupling protein 3L is likely to be different.  相似文献   
183.
184.
185.
The nitrogen-15 chemical shift of the N1 (tau)-nitrogen of 15N-labeled histidine and the half-height line widths of proton-coupled resonances of the delta- and omega,omega'-nitrogens of 15N-labeled arginine and of the alpha-nitrogens of 15N-labeled alanine and proline were measured in intact mycelia of Neurospora crassa to obtain to estimates of intracellular pH. For intracellular 15N-labeled histidine, the N1 (tau)-nitrogen chemical shift was 200.2 ppm. In vitro measurements showed that the chemical shift was slightly affected by the presence of phosphate, with which the basic amino acids may be associated in vivo. These considerations indicate a pH of 5.7-6.0 for the environment of intracellular histidine. The half-height line widths of the delta- and omega,omega'-nitrogens of [15N]arginine were 15 and 26 Hz, respectively. In vitro studies showed that these line widths also are influenced by the presence of phosphate, and, after suitable allowance for this, the line widths indicate pH 6.1-6.5 for intracellular arginine. The half-height line widths for intracellular alanine and proline were 17 and 12 Hz, respectively, which are consistent with an intracellular pH of 7.1-7.2. Pools of histidine and arginine are found principally in the vacuole of Neurospora, most likely in association with polyphosphates. Proline and alanine are cytoplasmic. The results reported here are consistent with these localizations and indicate that the vacuolar pH is 6.1 +/- 0.4 while the cytoplasmic pH is 7.15 +/- 0.10. Comparisons of these estimates with those obtained by other techniques and their implications for vacuolar function are discussed.  相似文献   
186.
The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.  相似文献   
187.
The ilvI and ilvH gene products were identified physically by electrophoretic analysis of in vivo-labelled polypeptides produced in minicells from plasmids carrying the wild-type ilvIH operon of Escherichia coli K-12 and derivatives of it. An analysis of the distribution of methionine residues in the amino-terminal portion of micro-quantities of the ilvI product eluted from gel showed that the translational start of the ilvI gene is the promoter-proximal one of three putative methionine codons predicted from the DNA sequence.  相似文献   
188.
Methylated lysine, arginine and histidine residues are found in a number of proteins (for example, histones, non-histone chromosomal proteins, ribosomal proteins, calmodulin, cytochrome C, etc.). We are studying the effects of methylation on the conformations of poly(lysine) and of the effects of methylation of poly(lysine) and poly(arginine) on interactions with polynucleotides. The conformational properties of epsilon-amino-methylated poly(lysine) differ from those of unmodified poly(lysine). Methylation increases resistance to thermally-induced and NaCl-induced changes in the CD spectrum. Guanidinium chloride increases (proportional to the degree of methylation) the extent of approach to the conformation in dispute as to its being a random coil or an extended helix. Methylation enhances aggregation in the helix-inducing solvent 0.5 M Ca(ClO4)2. With increasing methylation of poly(lysine), the conformation in dodecyl sulfate changes from beta, to 50% alpha, to random coil at the maximum methylation. Increasing methylation of poly(lysine) weakens the interaction with polynucleotides in respect to dissociation by salt, linearly with methyl content. Complexes of (dAdT)n.(dAdT)n with the polypeptides are increasingly stabilized to heat denaturation by progressive methylation. However, with a series of synthetic double-stranded RNA's and DNA's a more complex situation exists, Tm increasing or decreasing, depending on the base composition, sequence and type of sugar. Methylation of poly(lysine) and poly(arginine) can have opposite effects on Tm based on results with complexes with (dI)n.(dC)n. Methylated poly(lysine) affects the CD spectrum of polynucleotides, in a manner dependent on base composition and sequence. In some cases large positive or negative psi-spectra are induced, which, in the case of (dGdC)n.(dGdC)n, can be positive or negative depending on the degree of methylation of the polypeptide and the salt concentration. It is suggested that the biological effects of methylation proteins may be evoke by salt changes in the cell cycle, and that methylation can affect local interactions with nucleic acids and larger scale structure, and interactions with lipids.  相似文献   
189.
C T Grubmeyer  K W Chu  S Insinga 《Biochemistry》1987,26(12):3369-3373
Salmonella typhimurium histidinol dehydrogenase produces histidine from the amino alcohol histidinol by two sequential NAD-linked oxidations which form and oxidize a stable enzyme-bound histidinaldehyde intermediate. The enzyme was found to catalyze the exchange of 3H between histidinol and [4(R)-3H]NADH and between NAD and [4(S)-3H]NADH. The latter reaction proceeded at rates greater than kcat for the net reaction and was about 3-fold faster than the former. Histidine did not support an NAD/NADH exchange, demonstrating kinetic irreversibility in the second half-reaction. Specific activity measurements on [3H]histidinol produced during the histidinol/NADH exchange reaction showed that only a single hydrogen was exchanged between the two reactants, demonstrating that under the conditions employed this exchange reaction arises only from the reversal of the alcohol dehydrogenase step and not the aldehyde dehydrogenase reaction. The kinetics of the NAD/NADH exchange reaction demonstrated a hyperbolic dependence on the concentration of NAD and NADH when the two were present in a 1:2 molar ratio. The histidinol/NADH exchange showed severe inhibition by high NAD and NADH under the same conditions, indicating that histidinol cannot dissociate directly from the ternary enzyme-NAD-histidinol complex; in other words, the binding of substrate is ordered with histidinol leading. Binding studies indicated that [3H]histidinol bound to 1.7 sites on the dimeric enzyme (0.85 site/monomer) with a KD of 10 microM. No binding of [3H]NAD or [3H]NADH was detected. The nucleotides could, however, displace histidinol dehydrogenase from Cibacron Blue-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
190.
Interaction of the serum amyloid A proteins with phospholipid   总被引:2,自引:0,他引:2  
The serum amyloid A proteins (SAA) are transported in plasma in association with the high density lipoproteins. We have studied the solution properties of two of the polymorphic forms of SAA, SAA1 and SAA4, and compared the lipid-binding properties of SAA4 to those of the well characterized apolipoproteins, apo-A-I, apo-A-II, and apo-C-III. SAA4 was monomeric at pH 2.9 but considerable self-association was demonstrated at pH 8.2, even in the presence of 1.0 M guanidine HCl. SAA4 differed from the apolipoproteins in its ability to disrupt multilamellar dimyristoylphosphatidylcholine (DMPC) liposomes and generate bilayer discs. Apo-A-I, apo-A-II, and apo-C-III reduced the turbidity of DMPC dispersions at protein:lipid molar ratios of 1:200. SAA4, however, increased turbidity at molar ratios of 1:250 and 1:100 even when preincubated in guanidine HCl before addition to liposomes. Optical density decreased only at ratios of 1:50 and 1:25. At an SAA4:DMPC ratio of 1:50, discoidal particles (long axis, 28.1 nm; short axis, 4.4 nm) were formed which were similar to those produced by apo-C-III. Lipid binding induced changes in SAA4 conformation similar to those observed in the apolipoproteins. The alpha-helical content and intrinsic tryptophanyl fluorescence were increased and quenching of tryptophanyl fluorescence by acrylamide was reduced in the presence of DMPC. In addition, SAA4 as well as the apolipoproteins broadened the range and increased the temperature of the gel-liquid crystal transition temperature of DMPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号