首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2032篇
  免费   197篇
  国内免费   2篇
  2231篇
  2023年   6篇
  2022年   20篇
  2021年   51篇
  2020年   21篇
  2019年   22篇
  2018年   45篇
  2017年   31篇
  2016年   63篇
  2015年   96篇
  2014年   108篇
  2013年   131篇
  2012年   194篇
  2011年   144篇
  2010年   92篇
  2009年   101篇
  2008年   130篇
  2007年   122篇
  2006年   126篇
  2005年   120篇
  2004年   97篇
  2003年   107篇
  2002年   95篇
  2001年   19篇
  2000年   17篇
  1999年   15篇
  1998年   35篇
  1997年   27篇
  1996年   24篇
  1995年   18篇
  1994年   15篇
  1993年   20篇
  1992年   10篇
  1991年   16篇
  1990年   15篇
  1989年   7篇
  1988年   8篇
  1986年   5篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1929年   2篇
  1927年   3篇
  1925年   2篇
  1912年   3篇
  1910年   4篇
  1909年   3篇
  1908年   5篇
排序方式: 共有2231条查询结果,搜索用时 0 毫秒
101.
102.

Background

The recently developed heterologous macrolide‐ (E.REX system) and streptogramin‐ (PIP system) responsive gene regulation systems show significant differences in their regulation performance in diverse cell lines.

Methods

In order to provide optimal regulation modalities for a wide variety of mammalian cell lines, we have performed a detailed analysis of E.REX and PIP systems modified in (i) the transactivation domains of the antibiotic‐dependent transactivators, (ii) the type of minimal promoter used, and (iii) the spacing between the operator module and the minimal promoter.

Results

These novel E.REX and PIP regulation components showed not only dramatically improved regulation performance in some cell types, but also enabled their use in cell lines which had previously been inaccessible to regulated transgene expression.

Conclusions

Due to their modular set‐up the novel E.REX and PIP regulation systems presented here are most versatile and ready for future upgrades using different cell‐specific key regulation components. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
103.
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [V?r?s et al., Eur. J. Biochem. 251 (1998), 36-44], two full-length cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonate-treated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenase-derived products in the stroma and in the envelope. These data revealed jasmonate-induced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.  相似文献   
104.
105.
106.
107.
The human pathogenic fungus Cryptococcus neoformans exhibits the phenomenon of phenotypic switching, a process that generates variant colonies that can differ in morphology, virulence and other characteristics such as capsular glucuronoxylomannan (GXM) size and structure. A previous study established that mucoid colony (MC) variants of C. neoformans were more virulent and elicited a different inflammatory response than smooth colony (SM) variants. In this study, we investigated the interaction of cells from MC and SM variants and their respective GXMs with human T cells and monocytes. Specifically, we measured CD40, CD80 and CD86 expression, lymphoproliferation and interleukin (IL)-4, IL-10, interferon (IFN)-gamma and IL-12Rbeta2 expression in the presence and absence of variant cells and their GXMs. For some immune parameters, both MC and SM strains produced similar results, in particular no differences were observed in IL-4 induction. However, for other critical parameters, including CD86 expression, lymphoproliferation and IL-10 production, the MC variant had effects that can be expected to impair the immune response. Hence, a single C. neoformans strain can elicit several different immune responses depending on the colony type expressed, and this is unlikely to be accounted for by differences in phagocytosis only. The results provide a potential explanation for the higher virulence of the MC variant based on the concept that these cells inhibit the development of a vigorous immune response. Furthermore, the results suggest a mechanism by which phenotypic switching can generate variants able to evade the immune response.  相似文献   
108.
Occurrence of an essential enzyme in jasmonate (JA) biosynthesis, the allene oxide cyclase, (AOC) was analyzed in different developmental stages and various organs of Arabidopsis thaliana plants by immuno blot analysis and immunocytological approaches. Levels of AOC and of the two preceding enzymes in JA biosynthesis increased during seedling development accompanied by increased levels of JA and 12-oxophytodienoic acid levels after 4 and 8 weeks. Most tissues including all vascular bundles and that of flower buds contain AOC protein. Flowers shortly before opening, however, contain AOC protein preferentially in ovules, stigma cells and vascular bundles, whereas in anthers and pollen AOC could not be detected. The putative roles of AOC and JA in development are discussed.  相似文献   
109.
Enzymes of jasmonate biosynthesis occur in tomato sieve elements   总被引:14,自引:0,他引:14  
The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000) Plant J. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003) Plant J. 33: 577], the data support a role of JA in systemic wound signaling.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号