首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1997篇
  免费   176篇
  国内免费   2篇
  2175篇
  2023年   5篇
  2022年   20篇
  2021年   46篇
  2020年   20篇
  2019年   22篇
  2018年   41篇
  2017年   28篇
  2016年   59篇
  2015年   87篇
  2014年   100篇
  2013年   124篇
  2012年   183篇
  2011年   144篇
  2010年   86篇
  2009年   104篇
  2008年   123篇
  2007年   123篇
  2006年   121篇
  2005年   127篇
  2004年   101篇
  2003年   109篇
  2002年   97篇
  2001年   21篇
  2000年   20篇
  1999年   17篇
  1998年   38篇
  1997年   26篇
  1996年   25篇
  1995年   17篇
  1994年   16篇
  1993年   18篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1981年   5篇
  1979年   4篇
  1978年   7篇
  1977年   2篇
  1976年   7篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
  1966年   2篇
  1953年   3篇
排序方式: 共有2175条查询结果,搜索用时 0 毫秒
991.

Background  

The distribution area of pearl millet in West and Central Africa (WCA) harbours a wide range of climatic and environmental conditions as well as diverse farmer preferences and pearl millet utilization habits which have the potential to lead to local adaptation and thereby to population structure. The objectives of our research were to (i) assess the geographical distribution of genetic diversity in pearl millet inbreds derived from landraces, (ii) assess the population structure of pearl millet from WCA, and (iii) identify those geographical parameters and environmental factors from the location at which landraces were sampled, as well as those phenotypic traits that may have affected or led to this population structure. Our study was based on a set of 145 inbred lines derived from 122 different pearl millet landraces from WCA.  相似文献   
992.
Mutations in the gene encoding the glycosyltransferase polypeptide GalNAc-T3, which is involved in initiation of O-glycosylation, were recently identified as a cause of the rare autosomal recessive metabolic disorder familial tumoral calcinosis (OMIM 211900). Familial tumoral calcinosis is associated with hyperphosphatemia and massive ectopic calcifications. Here, we demonstrate that the secretion of the phosphaturic factor fibroblast growth factor 23 (FGF23) requires O-glycosylation, and that GalNAc-T3 selectively directs O-glycosylation in a subtilisin-like proprotein convertase recognition sequence motif, which blocks processing of FGF23. The study suggests a novel posttranslational regulatory model of FGF23 involving competing O-glycosylation and protease processing to produce intact FGF23.  相似文献   
993.
The binding component (Vip1Ac) of the ADP-ribosylating vegetative insecticidal protein (Vip) of Bacillus thuringiensis HD201 was isolated from the supernatant of cell cultures. Vip1Ac protein solubilized at room temperature ran as oligomers on SDS-PAGE. These oligomers were not resistant to heating. Mass spectroscopic analysis of this high molecular mass band identified it as Vip1Ac. The protein formed in artificial lipid bilayer membranes channels with two conductance states of about 350 and 700 pS in 1 M KCl. The channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero-current membrane potential measurements showed that the Vip1Ac channel has a slightly higher permeability for chloride than for potassium ions. Asymmetric addition of Vip1Ac to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. The functional role of Vip1Ac and its relationship to other ADP-ribosylating toxins are discussed.  相似文献   
994.
Iridoviruses (IVs) are classified into five genera: Iridovirus and Chloriridovirus, whose members infect invertebrates, and Ranavirus, Lymphocystivirus, and Megalocytivirus, whose members infect vertebrates. Until now, Chloriridovirus was the only IV genus for which a representative and complete genomic sequence was not available. Here, we report the genome sequence and comparative analysis of a field isolate of Invertebrate iridescent virus type 3 (IIV-3), also known as mosquito iridescent virus, currently the sole member of the genus Chloriridovirus. Approximately 20% of the 190-kbp IIV-3 genome was repetitive DNA, with DNA repeats localized in 15 apparently noncoding regions. Of the 126 predicted IIV-3 genes, 27 had homologues in all currently sequenced IVs, suggesting a genetic core for the family Iridoviridae. Fifty-two IIV-3 genes, including those encoding DNA topoisomerase II, NAD-dependent DNA ligase, SF1 helicase, IAP, and BRO protein, are present in IIV-6 (Chilo iridescent virus, prototype species of the genus Iridovirus) but not in vertebrate IVs, likely reflecting distinct evolutionary histories for vertebrate and invertebrate IVs and potentially indicative of genes that function in aspects of virus-invertebrate host interactions. Thirty-three IIV-3 genes lack homologues in other IVs. Most of these encode proteins of unknown function but also encode IIV3-053L, a protein with similarity to DNA-dependent RNA polymerase subunit 7; IIV3-044L, a putative serine/threonine protein kinase; and IIV3-080R, a protein with similarity to poxvirus MutT-like proteins. The absence of genes present in other IVs, including IIV-6; the lack of obvious colinearity with any sequenced IV; the low levels of amino acid identity of predicted proteins to IV homologues; and phylogenetic analyses of conserved proteins indicate that IIV-3 is distantly related to other IV genera.  相似文献   
995.
Flavonoids are ubiquitous secondary plant metabolites which function as protectants against UV light and pathogens and are involved in the attraction of pollinators as well as seed and fruit dispersers. The hydroxylation pattern of the B-ring of flavonoids is determined by the activity of two members of the vast and versatile cytochrome P450 protein (P450) family, the flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H). Phylogenetic analysis of known sequences of F3′H and F3′5′H indicated that F3′5′H was recruited from F3′H before the divergence of angiosperms and gymnosperms. Seven cDNAs were isolated from species of the Asteraceae family, all of which were predicted to code for F3′Hs based on their sequences. The recombinant proteins of four of the heterologously in yeast expressed cDNAs exhibited the expected F3′H activity but surprisingly, three recombinant proteins showed F3′5′H activity. Phylogenetic analyses indicated the independent evolution of an Asteraceae-specific F3′5′H. Furthermore, sequence analysis of these unusual F3′5′H cDNAs revealed an elevated rate of nonsynonymous substitutions as typically found for duplicated genes acquiring new functions. Since F3′5′H is necessary for the synthesis of 3′,4′,5′-hydroxylated delphinidin-derivatives, which normally provide the basis for purple to blue flower colours, the evolution of an Asteraceae-specific F3′5′H probably reflects the adaptive value of efficient attraction of insect pollinators.  相似文献   
996.
Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 μm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)−1 day−1 with a 90% molar yield over a 45-h production period.  相似文献   
997.
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologues of human Letm1, a protein implicated in Wolf-Hirschhorn syndrome. We analyzed the function of Mdm38 and Ylh47 in yeast mitochondria to gain insight into the role of Letm1. We find that mdm38Delta mitochondria have reduced amounts of certain mitochondrially encoded proteins and low levels of complex III and IV and accumulate unassembled Atp6 of complex V of the respiratory chain. Mdm38 is especially required for efficient transport of Atp6 and cytochrome b across the inner membrane, whereas Ylh47 plays a minor role in this process. Both Mdm38 and Ylh47 form stable complexes with mitochondrial ribosomes, similar to what has been reported for Oxa1, a central component of the mitochondrial export machinery. Our results indicate that Mdm38 functions as a component of an Oxa1-independent insertion machinery in the inner membrane and that Mdm38 plays a critical role in the biogenesis of the respiratory chain by coupling ribosome function to protein transport across the inner membrane.  相似文献   
998.
999.
The significance of a special kind of VE-cadherin-based, desmoplakin- and plakoglobin-containing adhering junction, originally identified in certain endothelial cells of the mammalian lymphatic system (notably the retothelial cells of the lymph node sinus and a subtype of lining endothelial cells of peripheral lymphatic vessels), has been widely confirmed and its importance in the formation of blood and lymph vessels has been demonstrated in vivo and in vitro. We have recently extended the molecular and structural characterization of the complexus adhaerens and can now report that it represents a rare and special combination of components known from three other major types of cell junction. It comprises zonula adhaerens proteins (VE-cadherin, α- and β-catenin, protein p120ctn, and afadin), desmosomal plaque components (desmoplakin and plakoglobin), and tight-junction proteins (claudin-5 and ZO-1) and forms junctions that vary markedly in size and shape. The special character and the possible biological roles of the complexus adhaerens and its unique ensemble of molecules in angiogenesis, immunology, and oncology are discussed. The surprising finding of claudin-5 and protein ZO-1 in substructures of retothelial cell-cell bridges, i.e. structures that do not separate different tissues or cell layer compartments, suggests that such tight-junction molecules are involved in functions other than the “fence” and “barrier” roles of zonulae occludentes. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG grant MO 345/5-2). This study is part of a thesis presented to the Faculty of Medicine of the University of Heidelberg, Germany, to fulfil the requirements of the doctoral degree (MD) of the first author.  相似文献   
1000.

Background  

Plasmids are an important component of the bacterial genome, but the crosstalk between genes encoded on the chromosome and on the plasmid is still poorly understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号