首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1997篇
  免费   176篇
  国内免费   2篇
  2175篇
  2023年   5篇
  2022年   20篇
  2021年   46篇
  2020年   20篇
  2019年   22篇
  2018年   41篇
  2017年   28篇
  2016年   59篇
  2015年   87篇
  2014年   100篇
  2013年   124篇
  2012年   183篇
  2011年   144篇
  2010年   86篇
  2009年   104篇
  2008年   123篇
  2007年   123篇
  2006年   121篇
  2005年   127篇
  2004年   101篇
  2003年   109篇
  2002年   97篇
  2001年   21篇
  2000年   20篇
  1999年   17篇
  1998年   38篇
  1997年   26篇
  1996年   25篇
  1995年   17篇
  1994年   16篇
  1993年   18篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1981年   5篇
  1979年   4篇
  1978年   7篇
  1977年   2篇
  1976年   7篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
  1966年   2篇
  1953年   3篇
排序方式: 共有2175条查询结果,搜索用时 15 毫秒
41.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   
42.
43.
44.
Gerard G. Lippert 《CMAJ》1953,69(3):330-331
  相似文献   
45.
Although it is well established that ectomycorrhizas improve the mineral nutrition of forest trees, there has been little evidence that they mediate uptake of divalent cations such as Mg. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus Batsch in a sand culture system with two compartments separated by a 45-μm Nylon mesh. Hyphae, but not roots, can penetrate this net. Labeling the compartment only accessible to hyphae with 25Mg showed that hyphae of the ectomycorrhizal fungus Paxillus involutus transported Mg to their host plant. No label was found in nonmycorrhizal control plants. Our data support the idea that ectomycorrhizas are important for the Mg nutrition of forest trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
46.
47.
48.

Purpose

Transient global amnesia (TGA) is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET) or single-photon emission computed tomography (SPECT). In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI) in TGA in the acute phase.

Methods

From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF) and volume (CBV)) were generated and analyzed by use of Signal Processing In NMR-Software (SPIN). CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL).

Results

Five TGA patients were included (2 men, 3 women). On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.

Conclusions

Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI examinations.  相似文献   
49.
Hermit crabs play an important role in the Northern Adriatic Sea due to their abundance, wide range of symbionts, and function in structuring the benthic community. Small-scale (0.25?m(2)) hypoxia and anoxia were experimentally generated on a sublittoral soft bottom in 24?m depth in the Gulf of Trieste. This approach successfully simulates the seasonal low dissolved oxygen (DO) events here and enabled studying the behaviour and mortality of the hermit crab Paguristes eremita. The crabs exhibited a sequence of predictable stress responses and ultimately mortality, which was correlated with five oxygen thresholds. Among the crustaceans, which are a sensitive group to oxygen depletion, P. eremita is relatively tolerant. Initially, at mild hypoxia (2.0 to 1.0?ml?l(-?1) DO), hermit crabs showed avoidance by moving onto better oxygenated, elevated substrata. This was accompanied by a series of responses including decreased locomotory activity, increased body movements and extension from the shell. During a moribund phase at severe hypoxia (0.5 to 0.01?ml?l(-?1) DO), crabs were mostly immobile in overturned shells and body movements decreased. Anoxia triggered emergence from the shell, with a brief locomotion spurt of shell-less crabs. The activity pattern of normally day-active crabs was altered during hypoxia and anoxia. Atypical interspecific interactions occurred: the crab Pisidia longimana increasingly aggregated on hermit crab shells, and a hermit crab used the emerged infaunal sea urchin Schizaster canaliferus as an elevated substrate. Response patterns varied somewhat according to shell size or symbiont type (the sponge Suberites domuncula). Mortality occurred after extended anoxia (~?1.5?d) and increased hydrogen sulphide levels (H(2)S ~?128?μmol). The relative tolerance of crabs and certain symbionts (e.g. the sea anemone Calliactis parasitica) - as potential survivors and recolonizers of affected areas - may influence and promote community recovery after oxygen crises.  相似文献   
50.
Baines JF  Harr B 《Genetics》2007,175(4):1911-1921
Contrasting patterns of X-linked vs. autosomal diversity may be indicative of the mode of selection operating in natural populations. A number of observations have shown reduced X-linked (or Z-linked) diversity relative to autosomal diversity in various organisms, suggesting a large impact of genetic hitchhiking. However, the relative contribution of other forces such as population bottlenecks, variation in reproductive success of the two sexes, and differential introgression remains unclear. Here, we survey 13 loci, 6 X-linked and 7 autosomal, in natural populations of the house mouse (Mus musculus) subspecies complex. We studied seven populations of three different subspecies, the eastern house mouse M. musculus castaneus, the central house mouse M. m. musculus, and the western house mouse M. m. domesticus, including putatively ancestral and derived populations for each. All populations display lower diversity on the X chromosomes relative to autosomes, and this effect is most pronounced in derived populations. To assess the role of demography, we fit the demographic parameters that gave the highest likelihood of the data using coalescent simulations. We find that the reduction in X-linked diversity is too large to be explained by a simple demographic model in at least two of four derived populations. These observations are also not likely to be explained by differences in reproductive success between males and females. They are consistent with a greater impact of positive selection on the X chromosome, and this is supported by the observation of an elevated K(A) and elevated K(A)/K(S) ratios on the rodent X chromosome. A second contribution may be that the X chromosome less readily introgresses across subspecies boundaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号