首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1832篇
  免费   171篇
  国内免费   2篇
  2005篇
  2024年   1篇
  2023年   5篇
  2022年   19篇
  2021年   45篇
  2020年   20篇
  2019年   20篇
  2018年   40篇
  2017年   29篇
  2016年   59篇
  2015年   82篇
  2014年   97篇
  2013年   120篇
  2012年   175篇
  2011年   137篇
  2010年   85篇
  2009年   97篇
  2008年   117篇
  2007年   116篇
  2006年   118篇
  2005年   119篇
  2004年   94篇
  2003年   104篇
  2002年   91篇
  2001年   18篇
  2000年   12篇
  1999年   11篇
  1998年   35篇
  1997年   23篇
  1996年   21篇
  1995年   17篇
  1994年   14篇
  1993年   16篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1972年   1篇
排序方式: 共有2005条查询结果,搜索用时 0 毫秒
51.

Background  

The use of integrating viral vectors in Gene therapy clinical trials has pointed out the problem of the deleterous effect of the integration of the ectopic gene to the cellular genome and the safety of this strategy. We proposed here a way to induce the death of gene modified cells upon request by acting on a pro-apoptotic protein cellular localization and on the activation of its apoptotic function.  相似文献   
52.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
53.
54.
Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots   总被引:12,自引:0,他引:12  
  相似文献   
55.
Jasmonates in arbuscular mycorrhizal interactions   总被引:2,自引:0,他引:2  
The mutualistic interaction between plants and arbuscular mycorrhizal (AM) fungi is believed to be regulated from the plant side among other signals by the action of phytohormones. Evidences for this are based mainly on application experiments and determination of phytohormone levels in AM roots by comparison to non-mycorrhizal roots. In case of jasmonates, additional proof is given by reverse genetic approaches, which led to first insights into their putative role in the establishment and functioning of the symbiosis. This review summarizes the current data about phytohormone action in AM roots and the role of jasmonates in particular.  相似文献   
56.
Sixty-one Borrelia burgdorferi sensu lato strains from various sources (ticks, human, and wild animals) in Japan and two strains from ticks in Far Eastern Russia were classified on the basis of reactivity with 16 monoclonal antibodies (mAb) to outer surface protein A (OspA) and by DNA-DNA hybridization assay. Eleven OspA serotypes (J1 to J11) were recognized among the Japanese and the Far East Russian isolates (serotypes J1 to J9 were identified as B. garinii, serotype J10 was identified as B. afzelii, and serotype J11 corresponded to B. japonica), whereas 7 OspA serotypes for North American and European isolates previously reported (Bettina Wilske et al, J. Clin. Microbiol. 31:340-350, 1993) were not observed except for OspA serotype 2 which showed identical reactivity with OspA serotype J10. This finding provides helpful information for understanding the geographical distribution of Lyme disease borrelia and the development of vaccine and diagnostic tests. In conclusion: 1. B. burgdorferi sensu stricto has not been observed in Japan, 2. Japanese B. afzelii isolates are closely related to those from Europe, 3. B. garinii isolates from Japan are highly heterogeneous and apparently different from European B. garinii isolates.  相似文献   
57.

The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  相似文献   
58.
Cyanobacteria are among the most ancient of evolutionary lineages, oxygenic photosynthesizers that may have originated before 3.0 Ga, as evidenced by free oxygen levels. Throughout the Precambrian, cyanobacteria were one of the most important drivers of biological innovations, strongly impacting early Earth's environments. At the end of the Archean Eon, they were responsible for the rapid oxygenation of Earth's atmosphere during an episode referred to as the Great Oxidation Event (GOE). However, little is known about the origin and diversity of early cyanobacterial taxa, due to: (1) the scarceness of Precambrian fossil deposits; (2) limited characteristics for the identification of taxa; and (3) the poor preservation of ancient microfossils. Previous studies based on 16S rRNA have suggested that the origin of multicellularity within cyanobacteria might have been associated with the GOE. However, single‐gene analyses have limitations, particularly for deep branches. We reconstructed the evolutionary history of cyanobacteria using genome scale data and re‐evaluated the Precambrian fossil record to get more precise calibrations for a relaxed clock analysis. For the phylogenomic reconstructions, we identified 756 conserved gene sequences in 65 cyanobacterial taxa, of which eight genomes have been sequenced in this study. Character state reconstructions based on maximum likelihood and Bayesian phylogenetic inference confirm previous findings, of an ancient multicellular cyanobacterial lineage ancestral to the majority of modern cyanobacteria. Relaxed clock analyses provide firm support for an origin of cyanobacteria in the Archean and a transition to multicellularity before the GOE. It is likely that multicellularity had a greater impact on cyanobacterial fitness and thus abundance, than previously assumed. Multicellularity, as a major evolutionary innovation, forming a novel unit for selection to act upon, may have served to overcome evolutionary constraints and enabled diversification of the variety of morphotypes seen in cyanobacteria today.  相似文献   
59.

Background and aims

Herbaspirillum seropedicae (Hs) Z67 a diazotrophic endophyte was genetically engineered for secretion of 2-keto-D-gluconic acid by heterologous expression of genes for pqq synthesis and gluconate dehydrogenase to study its beneficial effect on plants.

Methods

Two plasmids, pJNK5, containing a 5.1 Kb pqq gene cluster of Acinetobacter calcoaceticus and pJNK6, carrying in addition the Pseudomonas putida KT2440 gluconate dehydrogenase (gad) operon were constructed in pUCPM18Gmr under Plac promoter. H. seropedicae Z67 transformants were monitored for P and K solubilization, cadmium (Cd) tolerance and rice growth promotion.

Results

Hs (pJNK5) secreted 23.5 mM gluconic acid and Hs (pJNK6) secreted 3.79 mM gluconic acid and 15.8 mM 2-ketogluconic acid respectively. Under aerobic conditions, Hs (pJNK5) and Hs (pJNK6) solubilized 239.7 μM and 457.7 μM P on HEPES rock phosphate and, 76.7 μM and 222.7 μM K on HRPF (feldspar), respectively, in minimal medium containing 50 mM glucose. Under N free minimal medium, similar effects of P and K solubilization were obtained. Hs (pJNK5) and Hs (pJNK6) inoculation increased the biomass, N, P, K content of rice plants (Gujarat – 17). These plants also accumulated 0.73 ng/g PQQ, and had improved growth and tolerance to CdCl2.

Conclusions

Incorporation of pqq and gad gene clusters in H. seropedicae Z67 imparted additional plant growth promoting traits of P and K solubilization and ability to alleviate Cd toxicity to the host plant.
  相似文献   
60.
Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号