首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   48篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   13篇
  2014年   14篇
  2013年   18篇
  2012年   15篇
  2011年   19篇
  2010年   18篇
  2009年   10篇
  2008年   22篇
  2007年   21篇
  2006年   23篇
  2005年   27篇
  2004年   26篇
  2003年   18篇
  2002年   13篇
  2001年   9篇
  2000年   3篇
  1999年   2篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1956年   1篇
排序方式: 共有350条查询结果,搜索用时 31 毫秒
51.
The invasion of natural habitats by nonnative species is affected by both native biodiversity and environmental conditions; however few tests of facilitation between native community members and nonnative species have been conducted along disturbance and stress gradients. There is strong evidence for an increase in facilitation between native plant species with increasing levels of natural environmental stress, however it is unknown whether these same positive interactions occur between nonnative invaders and native communities. I investigated the effects of natural stress on community interactions between native heathland species and nonnative species with two field studies conducted at the landscape and community scale. At the landscape scale of investigation, nonnative species richness was positively related to native species richness. At the community level, nonnative invaders experienced facilitation with natives in the most stressful zones, whereas they experienced competition with native plants in the less stressful zones of the heathlands. Due to the observational nature of the landscape scale data, it is unclear whether nonnative diversity levels are responding positively to extrinsic factors or to native biodiversity. The experimental component of this research suggests that native community members may ameliorate stressful environmental conditions and facilitate invasion into high stress areas. I present a conceptual model which is a modification of the Shea and Chesson diversity-invasibility model and includes both facilitation as well as competition between the native community and nonnative invaders at the community level, summing to an overall positive relationship at the landscape scale.  相似文献   
52.
Inflammation is the major cause of endothelial barrier hyper‐permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 “orchestrates” the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1‐ and P21‐activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho‐cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP) blocked the LPS‐induced hyper‐permeability, and P53 inhibition reversed the 17AAG‐induced PDXP down‐regulation. P190RHOGAP suppression enhanced the LPS‐triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and blocked the LPS‐induced pMLC2 up‐regulation in wild‐type mice. Pulmonary endothelial cells from “super p53” mice, which carry additional p53‐tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 operates to enhance barrier function.  相似文献   
53.
Abstract. Insights into the ecology of historic invasions by introduced species can be gained by studying long‐term patterns of invasions by native species. In this paper, we review literature in palaeo‐ecology, forest‐stand simulation modelling, and historical studies of plant species invasions to illustrate the relevance of biological inertia in plant communities to invasion ecology. Resistance to invasion occurs in part because of environmental, demographic, and biotic factors influencing the arrival and establishment of invading species. We propose that biological inertia within the resident community is a fourth component of resistance to invasion, because of the lag time inherent in eliminating resident species and perhaps their traces after environmental conditions become suitable for invasion by immigrating species. Whether or not an introduced species invades can be conditioned by the presence of the pre‐existing community (and/or its legacy) in addition to the other biotic and abiotic factors.  相似文献   
54.
Summary Quantitative plankton samples were collected from three small ponds weekly for fourteen weeks during the summer. Seven species of Cladocera and five species of Copepoda were collected. Nine of the species had significant affinities which were formed into one recurrent group and three associated species. The recurrent group of two cladocerans, one calanoid and three cyclopoids resembled the species composition of many small to medium lakes.The members of the recurrent group were sub-divided into filter-feeders and seizers. There were no constant numerical dominance (W) relations among the filter-feeders; W was highly significant for the seizers. There were significant differences in relative abundance for both sub-groups. The test for concordance was insignificant for both sub-groups.The population cycle of each species in each pond is described. Correlation analysis of population units of each species and several environmental factors is presented.Populations of each species found in more than one pond were compared. Population trends were compared by correlation analysis. Few significant correlations were found. Population levels were compared by analysis of variance. Many significant differences were found but the measured environmental data did not explain the differences.The diversity index did not differ significantly among weeks or among ponds. More significant correlations occurred among the species in the recurrent group; the second highest number occurred between associated species and recurrent group species. Few correlations occurred among associated species or among non-associated species or between non-associated species and any other species grouping. The significance of these patterns of diversity and correlations to the idea of a community is discussed.
Résumé Des échantillons de plancton ont été recueillis chaque semaine de trois petits étangs pendant quatorze semaines de lété. Sept espèces de Cladocères et cinq espèces de Copepodes ont été recueillies. Neuf des espèces avaient des affinités importantes et étaient formées dans un groupe récurrent et trois espèces avaient une association avec le groupe récurrent. Le groupe récurrent, composé de deux Cladocères, un Calanoide, et trois Cyclopoides, ressemblait la composition des espèces trouvées dans des petits lacs ou dans des lacs moyens.Les members du groupe récurrent étaient subdivisés entre des filtreurs et des prédateurs. Entre les filtreurs on ne pouvait pas trouver une domination numérique (W) qui était constante; (W) était vraiment important dans les prédateurs. Il y avait des différences importantes dans l'abondance relative pour les deux sous-groupes. L'épeuve de concordance était significative pour les deux sous-groupes.Le cycle de population de chaque espèce trouvée dans chaque étang est décrit. Les éléments de population de chaque espèce et plusieurs facteurs d'environnement ont été analysés corrélativement et les résultats sont présentés ici. Les populations des espèces trouvées dans plusieurs étangs ont été comparées. Les tendances de population ont été comparées par des analyses de corrélations. Peu de corrélations importantes ont été trouvées. Les hauteurs de population ont été comparées par des analyses de variabilité. Beaucoup de différences significatives ont été trouvées, mais les données d'environnement mesurées n'ont pas expliqué les differences trouvées.L'indice de diversité n'était pas différent d'une manière significative entre les semaines ou entre les étangs. Les corrélations les plus significative ont été trouvées parmi les espèces dans le groupe récurrent; le deuxième nombre de corrélations significatives le plus haut se présentait entre les espèces ayant une affinité et les espèces du groupe récurrent. Peu de corrélations ont été trouvé parmi les espèces ayant une affinité ou parmi les espèces n'ayant aucune affinité ou entre les espèces n'ayant aucune affinité et d'autres groupes d'espèces. La signification de ces modèles de diversités et de la corrélation à l'idée d'une communauté est discutée.
  相似文献   
55.
A 21-year-old multiparous female exhibiting 31–41 day menstrual cycles was given hFSH (225 IU/day, Metrodin 75, from cycle day 3 through 9 (menses = day 1) and hCG (10,000 IU, Profasi, on day 10 to stimulate follicular development. At 35 h after hCG, under isoflurane (AErrane) anesthesia, follicles were aspirated by controlled suction under transvaginal ultrasound guidance. Metaphase II oocyctes (n = 11) were placed in modified human tubal fluid (mHTF, 100 μl) medium under oil at 37°C in humidified 5% CO2. Frozen semen, collected by voluntary ejaculation, was thawed (70°C H2O bath, 6 sec), diluted slowly, centrifuged, and resuspended in mHTF, and 160,000 motile spermatozoa/ml were added at 6 h after oocyte recovery. At 21 h postinsemination (p.i.) eight oocytes were at the two-cell stage, five were cryopreserved, and three were cultured to the six- to eight-cell stage in mHTF with granulosa cells before transcervical uterine transfer at 47 h p.i. using a Teflon catheter. Micronized progesterone (400 mg/d) was orally administered for 10 weeks posttransfer (p.t.). Ultrasound examination revealed a single fetus at 15 weeks p.t., and unassisted delivery of a live 1.37 kg female infant occurred at 29 weeks. Am. J. Primatol. 41:247–260, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
56.
The marine coccolithophorid Emiliania huxleyi is a cosmopolitan alga intensely studied in relation to global carbon cycling, biogeochemistry, marine ecology, and biomineralization processes. The biomineralization capabilities of coccolithophorids have attracted the attention of scientists interested in exploiting this ability for the development of materials science and biomedical and biotechnological applications. Although it has been well documented that biomineralization in E. huxleyi is promoted by growth under phosphate-limited conditions, the genes and proteins that govern the processes of calcification and coccolithogenesis remain unknown. Suppressive subtractive hybridization (SSH) libraries were constructed from cultures grown in phosphate-limited and phosphate-replete media as tester and driver populations for reciprocal SSH procedures. Positive clones from each of the two libraries were randomly selected, and dot blotting was performed for the analysis of expression patterns. A total of 513 clones from the phosphate-replete library and 423 clones from the phosphate-limited library were sequenced, assembled, and compared to sequences in GenBank using BLASTX. Of the 103 differentially expressed gene fragments from the phosphate-replete library, 34% showed significant homology to other known proteins, while only 23% of the 65 differentially expressed gene fragments from the phosphate-limited library showed homology to other proteins. To further assess mRNA expression, real-time RT-PCR analysis was employed and expression profiles were generated over a 14-day time course for three clones from the phosphate-replete library and five clones from the phosphate-limited library. The fragments isolated provide the basis for future cloning of full-length genes and functional analysis.  相似文献   
57.
Ambient levels of ultraviolet-B radiation (UVB) have a variety of detrimental effects on aquatic organisms. These include death and effects on growth, development, physiology, and behavior. Amphibians show all of these effects. However, the effects vary with species, life history stage, and ecological context. Little is known about the implications of the detrimental effects of UVB on ecological dynamics. Our study was designed to test how UVB may affect predator–prey interactions, an important ecological dynamic. Specifically, we tested the effect of UVB on the susceptibility of Cascades frog (Rana cascadae) larvae to predation by rough-skinned newts (Taricha granulosa). We also further examined the sublethal effects of UVB on growth and development in Cascades frog larvae. We found no direct effect of UVB exposure on survival. However, UVB-exposed frog larvae displayed decreased growth and increased prevalence of deformities. UVB also caused increased susceptibility to predation, but there was a significant treatment–block interaction. UVB increased susceptibility to predation in two out of five blocks of Cascades frogs. The other three blocks did not show an effect of UVB on susceptibility to predation. Our study suggests that UVB can alter susceptibility to predation in at least one amphibian species. UVB-induced alteration of predator–prey interactions could potentially lead to changes at the population, community, and ecosystem levels. Handling editor: K. Martens  相似文献   
58.
The occurrence and spread of antibiotic-resistant bacteria (ARB) are pressing public health problems worldwide, and aquatic ecosystems are a recognized reservoir for ARB. We used culture-dependent methods and quantitative molecular techniques to detect and quantify ARB and antibiotic resistance genes (ARGs) in source waters, drinking water treatment plants, and tap water from several cities in Michigan and Ohio. We found ARGs and heterotrophic ARB in all finished water and tap water tested, although the amounts were small. The quantities of most ARGs were greater in tap water than in finished water and source water. In general, the levels of bacteria were higher in source water than in tap water, and the levels of ARB were higher in tap water than in finished water, indicating that there was regrowth of bacteria in drinking water distribution systems. Elevated resistance to some antibiotics was observed during water treatment and in tap water. Water treatment might increase the antibiotic resistance of surviving bacteria, and water distribution systems may serve as an important reservoir for the spread of antibiotic resistance to opportunistic pathogens.The occurrence and spread of antibiotic-resistant bacteria (ARB) are pressing public health problems worldwide, and aquatic ecosystems are a recognized reservoir for ARB and antibiotic resistance genes (ARGs) (4, 6, 8, 11, 12, 15, 39). Naturally occurring ARB and ARGs in the aquatic environment are selected for and enriched for by antibiotics found in sewage and agricultural runoff, which result from the widespread and increased use of antibiotics (4, 11, 12, 15, 38). Historically, concerns about the microbial quality of drinking water have focused on the occurrence of pathogens in drinking water distribution systems (5, 34). However, the presence of trace levels of antibiotics and ARB in source water and finished drinking water may also greatly affect public health and is an emerging issue for the general public and the drinking water industry (3, 30). Although several studies have detected ARB in drinking water systems (2, 3, 20, 30, 38), most previous studies focused on cultivable bacteria and/or indicator organisms. Little is known about the fate of ARGs in drinking water systems, and it was recently proposed that ARGs are emerging contaminants (24).We used culture-dependent methods and molecular techniques to investigate the prevalence and dynamics of heterotrophic ARB and ARGs in a drinking water source (source RW-P) and treated drinking water (source DW-P) (see Materials and Methods in the supplemental material). We tested water from a drinking water plant located in Michigan and tap water from several small cities located in Michigan and Ohio (sources TW-1, TW-2, TW-3, and TW-4). Two independent samples were collected each time at each collection site at three different times, and we used four replicates from each sample for tests. We tested bacterial resistance to the following antibiotics: amoxicillin (amoxicilline), chloramphenicol, ciprofloxacin, gentamicin, rifampin (rifampicin), sulfisoxazole, and tetracycline. We also examined the presence of eight ARGs, including beta-lactam resistance genes (blaTEM and blaSHV), chloramphenicol resistance genes (cat and cmr), sulfonamide resistance genes (sulI and sulII), and tetracycline resistance genes (tetO and tetW).Total heterotrophic plate counts (HPC) were determined using R2A agar without added antibiotics. The water treatment process reduced the total HPC from 9.9 × 106 CFU/100 ml in source water to 68 CFU/100 ml in treated drinking water, indicating that there was efficient removal and/or deactivation of total HPC (Table (Table1).1). In contrast, the total 16S rRNA gene copy number decreased from 3.4 × 107 copies/100 ml in source water to 1.6 × 106 copies/100 ml in treated drinking water (Fig. (Fig.1).1). The discrepancy between the reduction in the HPC and the reduction in the total 16S rRNA gene copy number suggests that the final disinfection step effectively inactivated bacteria but most of the dead or damaged cells were still present in finished drinking water. The number of HPC in tap water ranged from 3.44 × 102 to 6.1 × 104 CFU/100 ml water, values that are lower than those for source water but significantly higher than those for treated drinking water, indicating that there is regrowth of bacteria in drinking water distribution systems. The copy numbers of total 16S rRNA genes in tap water ranged from 2.45 × 105 to 1.02 × 107 copies/100 ml water. The higher levels suggested by the 16S rRNA data are consistent with results of previous studies demonstrating that only 5 to 10% and 1% of bacteria in wastewater and soil, respectively, can be cultivated or identified by culture-based methods (9, 37). A significant correlation (P < 0.05, R2 = 0.78) was found between the 16S rRNA gene copy number and the total HPC if treated drinking water (DW-P) data were not included (Fig. (Fig.1).1). This suggests that cultivable bacteria in drinking water represent only a small portion of the total bacterial biomass. Including treated drinking water (DW-P) data resulted in a distorted correlation, suggesting that a large proportion of the 16S rRNA genes present came from dead and/or damaged cells. The levels of total heterotrophic bacteria were significantly higher in tap water (TW-1) than in treated drinking water (DW-P), indicating that there was bacterial regrowth in the water distribution system.Open in a separate windowFIG. 1.Heterotrophic bacteria and the 16S rRNA gene in different water samples. (A) Copy numbers of the 16S rRNA gene and numbers of heterotrophic bacteria (CFU) in 100 ml water. (B) Correlation (P < 0.05, R2 = 0.78) between the copy number of the 16S rRNA gene and the number of heterotrophic bacteria in different water samples (without the data for DW-P). RW-P, source water from the drinking water treatment plant; DW-P, finished drinking water from the drinking water treatment plant; TW-1, tap water from the city where the drinking water treatment plant is located; TW-2, TW-3, and TW-4, tap water from three towns in Michigan and Ohio close to the city where the TW-1 drinking water treatment plant is located. The statistical analysis was done using six samples for each type of water sample. Lg, log10.

TABLE 1.

Prevalence of ARB HPC in source water, finished drinking water, and tap water from four townsa
SamplebTotal HPC (CFU/100 ml)% of total HPC resistant to:
AmoxicillinCiprofloxacinChloramphenicolGentamicinRifampinSulfisoxazoleTetracycline
RW-P1.19 × 10611.67 ± 4.3911.60 ± 5.924.17 ± 1.9314.42 ± 5.5210.85 ± 3.577.46 ± 3.871.66 ± 0.80
DW-P6839.55 ± 9.79c4.77 ± 4.7119.45 ± 5.60c21.96 ± 14.4347.98 ± 17.99c1.17 ± 1.14c1.50 ± 1.24
TW-11.6 × 10415.22 ± 2.73d9.99 ± 4.7613.96 ± 3.70c13.40 ± 1.7362.00 ± 8.96c3.34 ± 1.213.78 ± 0.93c,d
TW-26.04 × 1043.02 ± 0.1913.14 ± 0.485.49 ± 0.474.67 ± 0.2128.10 ± 1.727.85 ± 0.670.08 ± 0.01
TW-33.44 × 1024.07 ± 0.170.18 ± 0.070.75 ± 0.392.18 ± 0.6282.15 ± 1.500.33 ± 0.030.98 ± 0.38
TW-42.46 × 10314.33 ± 1.740.18 ± 0.052.05 ± 0.049.76 ± 0.3414.23 ± 1.690.12 ± 0.0010.04 ± 0.002
Open in a separate windowaPrevalence was defined as the percentage of resistant HPC in the total HPC. The statistical analysis was done using six samples for each type and four technical replicates for each sample.bRW-P, source water from the drinking water treatment plant; DW-P, finished drinking water from the drinking water treatment plant; TW-1, tap water from the city where the drinking water treatment plant is located; TW-2, TW-3, and TW-4, tap water from three towns in Michigan and Ohio close to the city where the TW-1 drinking water treatment plant is located.cSignificantly different from RW-P.dSignificantly different from DW-P.The prevalence of HPC resistant to antibiotics was determined using R2A agar containing amoxicillin (4 mg/liter), chloramphenicol (16 mg/liter), ciprofloxacin (2 mg/liter), gentamicin (8 mg/liter), rifampin (2 mg/liter), sulfisoxazole (256 mg/liter), or tetracycline (8 mg/liter). Some groups of heterotrophic bacteria were resistant to all of the antibiotics at the concentrations tested in all water samples (Table (Table1).1). In the source water, 14.4% of the HPC were resistant to gentamicin and 1.7% were resistant to tetracycline. The resistance of HPC to amoxicillin, chloramphenicol, and rifampin was significantly higher (P < 0.01) in treated drinking water than in source water, while the resistance to sulfisoxazole was significantly lower (P < 0.01). Compared to treated drinking water (DW-P), the resistance of HPC to tetracycline in tap water was significantly greater and the resistance to amoxicillin was significantly lower (P < 0.01). The resistance to chloramphenicol and rifampin remained higher than the resistance in source water. The prevalence of HPC antibiotic resistance in tap water samples collected from other cities varied, but the resistance of HPC to rifampin was particularly high in all tap water samples.A number of previous studies have reported that ARB are common in drinking water (2, 3, 19, 25, 33). We added to these studies by testing water both before and after treatment, as well as tap water. Although the bacterial concentration was effectively lower during water treatment, the prevalence of resistance to amoxicillin, rifampin, and chloramphenicol nevertheless increased significantly.Several studies have discovered that chlorine, an agent widely used for disinfection, selects for ARB (2, 3, 9, 16, 33, 37). Armstrong et al. (2, 3) found that there was a significant increase in the proportion of multidrug-resistant (MAR) bacteria following flash mixing with chlorine. Murray et al. (16) demonstrated that the proportion of bacteria resistant to ampicillin and cephalothin (cefalotin) in sewage increased significantly following chlorination, and they observed a significant increase in the proportion of MAR strains during chlorination in laboratory experiments. Other studies demonstrated that the susceptibility of ARB to a disinfectant and the susceptibility of antibiotic-susceptible bacteria to a disinfectant are similar (7, 28), indicating that disinfection does not select ARB but instead induces the development of antibiotic resistance. Armstrong et al. (2, 3) suggested that stress-tolerant bacteria selected by chlorination might be more antibiotic resistant, and one study found that suboptimal chlorine treatment of drinking water selected for MAR Pseudomonas aeruginosa (33).The mechanism of chlorine-induced antibiotic resistance in bacteria is unknown. It is possible that chlorine can increase expression of the multidrug efflux pumps, leading to resistance to disinfection by-products as well as antibiotics. The drinking water treatment plant that we sampled used monochloramine as a disinfectant. No previous study has reported the effects of monochlroamine disinfection on ARB, but our results suggest that monochlromaine disinfection may have an effect similar to that of chlorine disinfection.Real-time PCR was used to quantify ARGs (including cat, cmr, blaTEM, blaSHV, sulI, sulII, tetW, and tetO) in collected water samples. All ARGs tested were detected in all water samples, except for the tetO and tetW genes, which were detected only in source water (Fig. (Fig.2).2). The copy number of each ARG in 100 ml water was calculated and normalized to the copy number of the total 16S rRNA genes to determine the relative abundance of each ARG in the water samples. Compared to the copy number in finished water, the copy number of ARGs in tap water was significantly greater (P < 0.001), except for the blaSHV gene, whose copy number was not significantly different (P = 0.124); the tetO and tetW genes were not detected in the drinking water sample after treatment. In terms of the relative abundance of ARGs in bacterial populations, all ARG/16S rRNA gene ratios were less than −3 log. Compared to source water, treated drinking water had a higher abundance of the cat and blaSHV genes (P < 0.001) but a lower abundance of the sulI gene (P < 0.001) (Fig. (Fig.2).2). No significant difference in any other ARG was found. After distribution, no significant change was observed in any ARG, except that the abundance of the blaTEM gene was significantly increased (P < 0.01) compared with the abundance in treated drinking water (DW-P) or in tap water (TW-1) (Fig. (Fig.2).2). The ARGs were also present in tap water samples collected from other cities. The similarity of the abundance of ARGs in the different tap water samples is quite remarkable (Fig. (Fig.2).2). The relative abundance of all ARGs was similar to that in the TW-1 tap water sample, except that the relative abundance of sulII and blaSHV was lower in the TW-2 and TW-3 tap water samples (Fig. (Fig.22).Open in a separate windowFIG. 2.Quantities of ARGs in different water samples. The bars indicate the copy numbers of the resistance genes normalized to the 16S rRNA gene copy number, and the symbols indicate the absolute copy numbers of ARGs in 100 ml water. RW-P, source water from the drinking water treatment plant; DW-P, finished drinking water from the drinking water treatment plant; TW-1, tap water from the city where the drinking water treatment plant is located; TW-2, TW-3, and TW-4, tap water from three towns in Michigan and Ohio close to the city where the TW-1 drinking water treatment plant is located. The statistical analysis was done using six samples for each type of water sample. Lg, log10.The quantities of individual ARGs were not significantly correlated with either HPC counts or 16S rRNA genes (data not shown), indicating that the ARGs tested were not evenly distributed among the bacterial populations in the water samples. However, the overall trends in quantity were similar for some ARGs and ARB. For example, in source water, treated drinking water, and tap water (TW-1), the number of heterotrophic bacteria resistant to amoxicillin, chloramphenicol, and sulfisoxazole corresponded to the proportion of genes coding for resistance to these antibiotics (blaSHV, cat, and sulI, respectively).Bacteria may inherit resistance to some antibiotics or can develop resistance via spontaneous mutation or the acquisition of resistant genes (35). The acquisition of a resistant gene via horizontal gene transfer is the most common and easiest way for bacteria to develop antibiotic resistance both in the environment and in a host (26, 29). Many bacteria transmit ARGs, and these ARGs were recently proposed to be emerging contaminants because of their widespread occurrence in aquatic ecosystems (13, 21, 22, 24). Plasmid-mediated blaTEM and blaSHV are the most common genes coding beta-lactamases and “extended-spectrum” beta-lactamases, a major cause of resistance to beta-lactams, and they are increasingly being found in different settings worldwide (14, 23). The enzymes encoded by these genes confer unequivocal resistance to ampicillin, amoxicillin, ticarillin, and carbenicillin (32, 36). We detected blaTEM and blaSHV genes in all but one water sample, which is evidence that these genes are distributed widely in drinking water systems. The selective increases in the levels of both genes in tap water due to either water treatment or regrowth within drinking water distribution systems suggest that the spread of at least some beta-lactam-resistant determinants may occur through drinking water distribution systems.Both tetO and tetW are tetracycline resistance genes encoding ribosomal protection proteins. Both of these genes are common in intestinal and rumen environments (1, 31); thus, their presence may indicate fecal contamination (22). If the tetO and tetW genes truly represent the level of fecal contamination, our results show that drinking water treatment was effective for eliminating and controlling fecal contamination.The most frequent cause of bacterial resistance to chloramphenicol is enzymatic inactivation by acetylation of the drug via different types of chloramphenicol acetyltransferases encoded by cat genes (17), but other mechanisms, such as efflux systems, may also contribute to chloramphenicol resistance (18). The proportion of cat genes increased significantly following water treatment, suggesting that the drinking water treatment did not effectively remove or inactivate the chloramphenicol-resistant bacterial population. On the other hand, the cmr gene, an efflux pump gene related to chloramphenicol resistance, showed little variation in different water sources.Sulfonamides act as competitive inhibitors of the enzyme dihydropteroate synthase in the folic acid pathway of bacterial and some eukaryotic cells. sulI and sulII encode alternative sulfonamide-resistant dihydropteroate synthases in gram-negative clinical bacteria, and both genes commonly occur (often at roughly the same frequency) in sulfisoxazole-resistant gram-negative clinical isolates (10). The drinking water treatment process significantly decreased the abundance of the sulI gene but had no significant influence on the sulII gene.In summary, we found heterotrophic ARB and ARGs in all finished water and tap water tested, although the amounts were small. The size of the general population of bacteria followed the order source water > tap water > finished water, indicating that there was regrowth of bacteria in drinking water distribution systems; elevated resistance to some antibiotics was observed during water treatment and in tap water. We show that the quantities of most ARGs are greater in tap water than in finished water and source water. The increased levels of ARGs and specialized groups of ARB in tap water compared to finished water and source water suggest that water treatment could increase the antibiotic resistance of surviving bacteria and/or induce transfer of ARGs among certain bacterial populations. Water distribution systems could serve as an incubator for growth of certain ARB populations and as an important reservoir for the spread of antibiotic resistance to opportunistic pathogens. Drinking water treatment processes and distribution systems can impact the spread of antibiotic resistance. Rusin et al. (27) estimated that the risk of infection by bacteria in drinking water was as low as 7.3 per billion people for exposure to low levels of Aeromonas and as high as 98 per 100 patients receiving antibiotic treatment exposed to high levels of Pseudomonas (27). Whether exposure to ARB results in an increased risk to the general public, particularly individuals with compromised immune systems, the very young, the very old, or individuals with chronic conditions, is not known and deserves further study. Future research should identify factors accounting for the selective increase in antibiotic resistance and develop new methods and approaches to reduce accumulation of such resistance.  相似文献   
59.
Robinia pseudoacacia, a nitrogen-fixing, clonal tree species native to the central Appalachian and Ozark Mountains, is considered to be one of the top 100 worldwide woody plant invaders. We initiated this project to determine the impact of black locust (Robinia pseudoacacia) on an upland coastal ecosystem and to estimate the spread of this species within Cape Cod National Seashore (CCNS). We censused 20 × 20 m plots for vegetation cover and environmental characteristics in the center of twenty randomly-selected Robinia pseudoacacia stands. Additionally, paired plots were surveyed under native overstory stands, comprised largely of pitch pine (Pinus rigida) and mixed pitch pine–oak (Quercus velutina and Quercus alba) communities. These native stands were located 20 m from the edge of the sampled locust stand and had similar land use histories. To determine the historical distribution of black locust in CCNS, we digitized and georeferenced historical and current aerial photographs of randomly-selected stands. Ordination analyses revealed striking community-level differences between locust and pine–oak stands in their immediate vicinity. Understory nonnative species richness and abundance values were significantly higher under Robinia stands than under the paired native stands. Additionally, animal-dispersed plant species tended to occur in closer stands, suggesting their spread between locust stands. Robinia stand area significantly decreased from the 1970’s to 2002, prompting us to recommend no management action of black locust and a monitoring program and possible removal of associated animal-dispersed species. The introduction of a novel functional type (nitrogen-fixing tree) into this xeric, nutrient-poor, upland forested ecosystem resulted in ‘islands of invasion’ within this resistant system.  相似文献   
60.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号