首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   18篇
  84篇
  2023年   1篇
  2021年   2篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
41.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.  相似文献   
42.
Nitric oxide (NO) is a freely diffusible, gaseous free radical and an important signaling molecule in animals. In plants, NO influences aspects of growth and development, and can affect plant responses to stress. In some cases, the effects of NO are the result of its interaction with reactive oxygen species (ROS). These interactions can be cytotoxic or protective. Because gibberellin (GA)-induced programmed cell death (PCD) in barley (Hordeum vulgare cv Himalaya) aleurone layers is mediated by ROS, we examined the effects of NO donors on PCD and ROS-metabolizing enzymes in this system. NO donors delay PCD in layers treated with GA, but do not inhibit metabolism in general, or the GA-induced synthesis and secretion of alpha-amylase. alpha-Amylase secretion is stimulated slightly by NO donors. The effects of NO donors are specific for NO, because they can be blocked completely by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The antioxidant butylated hydroxy toluene also slowed PCD, and these data support our hypothesis that NO is a protective antioxidant in aleurone cells. The amounts of CAT and SOD, two enzymes that metabolize ROS, are greatly reduced in aleurone layers treated with GA. Treatment with GA in the presence of NO donors delays the loss of CAT and SOD. We speculate that NO may be an endogenous modulator of PCD in barley aleurone cells.  相似文献   
43.
The brush border of intestinal epithelial cells consists of a tightly packed array of microvilli, each of which contains a core of actin filaments. It has been postulated that microvillar movements are mediated by myosin interactions in the terminal web with the basal ends of these actin cores (Mooseker, M.S. 1976. J. Cell. Biol. 71:417-433). We report here that two predictions of this model are correct: (a) The brush border contains myosin, and (b) myosin is located in the terminal web. Myosin is isolated in 70 percent purity by solubilization of Triton-treated brush borders in 0.6 M KI, and separation of the components by gel filtration. Most of the remaining contaminants can be removed by precipitation of the myosin at low ionic strength. This yield is approximately 1 mg of myosin/30 mg of solubilized brush border protein. The molecule consists of three subunits with molecular weights of 200,000, 19,000, and 17,000 daltons in a 1:1:1 M ratio. At low ionic strength, the myosin forms small, bipolar filaments with dimensions of 300 X 11nm, that are similar to filaments seen previously in the terminal web of isolated brush borders. Like that of other vertebrate, nonmuscle myosins, the ATPase activity of isolated brush border myosin in 0.6 M KCI is highest with EDTA (1 μmol P(i)/mg-min; 37 degrees C), intermediate with Ca++ (0.4 μmol P(i)/mg-min), and low with Mg++ (0.01 μmol P(i)/mg-min). Actin does not stimulate the Mg-ATPase activity of the isolated enzyme. Antibodies against the rod fragment of human platelet myosin cross-react by immunodiffusion with brush border myosin. Staining of isolated mouse or chicken brush borders with rhodamine-antimyosin demonstrates that myosin is localized exclusively in the terminal web.  相似文献   
44.
Declining participation in hunting, especially among young adult hunters, affects the ability of state and federal agencies to achieve goals for wildlife management and decreases revenue for conservation. For wildlife agencies hoping to engage diverse audiences in hunter recruitment, retention, and reactivation (R3) efforts, university settings provide unique advantages: they contain millions of young adults who are developmentally primed to explore new activities, and they cultivate a social atmosphere where new identities can flourish. From 2018 to 2020, we surveyed 17,203 undergraduate students at public universities across 22 states in the United States to explore R3 potential on college campuses and assess key demographic, social, and cognitive correlates of past and intended future hunting behavior. After weighting to account for demographic differences between our sample and the larger student population, 29% of students across all states had hunted in the past. Students with previous hunting experience were likely to be white, male, from rural areas or hunting families, and pursuing degrees related to natural resources. When we grouped students into 1 of 4 categories with respect to hunting (i.e., non-hunters [50%], potential hunters [22%], active hunters [26%], and lapsed hunters [3%]), comparisons revealed differences based on demographic attributes, beliefs, attitudes, and behaviors. Compared to active hunters, potential hunters were more likely to be females or racial and ethnic minorities, and less likely to experience social support for hunting. Potential hunters valued game meat and altruistic reasons for hunting, but they faced unique constraints due to lack of hunting knowledge and skills. Findings provide insights for marketing and programming designed to achieve R3 objectives with a focus on university students. © 2021 The Wildlife Society.  相似文献   
45.
Three hybridoma clones were isolated after hybridization of a mouse myeloma line with splenocytes from rats immunized with Forssman glycosphingolipid (Fo). Two of these clones produced Fo-specific monoclonal antibodies (MAB) of the IgM class, one MAB of the IgG2c class. In complement-dependent depletion experiments and immunofluorescence studies on the nature of Fo-positive leukocytes in CBA/J mice the following results were obtained: whereas blood monocytes, polymorphonuclear leukocytes, and lymphocytes were Fo negative, 5 to 10% of suspended spleen cells were positive. The majority of these were macrophage-like, glass- and nylon-adherent, nonspecific esterase-positive phagocytizing cells carrying Ia and globoside markers. These cells participated as accessory cells in the mixed lymphocyte culture reaction. In cell suspensions from axillary and inguinal lymph nodes, 2% were Fo positive. They were enriched up to 70% in the glass-adherent, esterase-positive population from this source. In contrast, no Fo-positive cells were detected in mesenteric lymph nodes, and less than 0.1% of the resident peritoneal macrophages bore this marker. The percentage of Fo-positive cells increased to 1% in thioglycollate-elicited peritoneal cells. Immunostaining of cryosections of lung and liver tissue showed alveolar macrophages and Kupffer cells, respectively, to be Fo negative.  相似文献   
46.
47.
Active oxygen and cell death in cereal aleurone cells   总被引:17,自引:0,他引:17  
The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.  相似文献   
48.
Apoplastic synthesis of nitric oxide by plant tissues   总被引:30,自引:0,他引:30       下载免费PDF全文
Nitric oxide (NO) is an important signaling molecule in animals and plants. In mammals, NO is produced from Arg by the enzyme NO synthase. In plants, NO synthesis from Arg using an NO synthase-type enzyme and from nitrite using nitrate reductase has been demonstrated previously. The data presented in this report strongly support the hypothesis that plant tissues also synthesize NO via the nonenzymatic reduction of apoplastic nitrite. As measured by mass spectrometry or an NO-reactive fluorescent probe, Hordeum vulgare (barley) aleurone layers produce NO rapidly when nitrite is added to the medium in which they are incubated. NO production requires an acid apoplast and is accompanied by a loss of nitrite from the medium. Phenolic compounds in the medium can increase the rate of NO production. The possible significance of apoplastic NO production for germinating grain and for plant roots is discussed.  相似文献   
49.
Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36–48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling.  相似文献   
50.
Jin Q  Bethke CM 《Biophysical journal》2002,83(4):1797-1808
We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号