首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   13篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   12篇
  2012年   12篇
  2011年   12篇
  2010年   4篇
  2009年   8篇
  2008年   10篇
  2007年   13篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1965年   1篇
排序方式: 共有185条查询结果,搜索用时 781 毫秒
121.
Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.  相似文献   
122.
Microalgae constitute an interesting novel study area for characterizing new esterases, and so we decided to isolate a complete cDNA encoding a new putative microalgal esterase from the haptophyte Isochrysis galbana Parke. Rapid amplifications of both the 5′ and 3′ cDNA ends (RACE) were performed with specific primers, designed using an incomplete candidate gene from the I. galbana expressed sequence tag (EST) database. The full‐length cDNA obtained was designated IgEst1. The coding sequence was 828 bp long, and the deduced amino acid sequence revealed a polypeptide of 275 amino acids with a predicted signal peptide of 23 residues in the N‐terminal region. The following 252 amino acids formed, after in silico analysis, a mature protein with a molecular mass of ~26.92 kDa and had a theoretical pI of 5.87. Alignment analyses revealed slight but significant identity and similarity with carboxylesterases, phospholipases, and lysophospholipases from various organisms including fungi, plants, and animals. The new sequence IgEst1 enclosed the catalytic triad Ser/Asp/His and the consensus pentapeptide Gly‐X‐Ser‐X‐Gly, two highly conserved patterns found in serine hydrolases. Phylogenetic analyses established a close relationship with putative esterases identified in microalgae genomes.  相似文献   
123.
Major histocompatibility complex (MHC) genes are among the most polymorphic in the vertebrate genome. The high allele diversity is believed to be maintained primarily by sexual and pathogen-mediated balancing selection. The number of MHC loci also varies greatly across vertebrates, most notably across birds. MHC proteins play key roles in presenting antigens on the cell surface for recognition by T cells, with class I proteins specifically targeting intracellular pathogens. Here, we explore the hypothesis that MHC class I diversity (measured as loci number) coevolves with haemosporidian parasite burden of the host. Using data on 54 bird species, we demonstrate that high-MHC class I diversity is associated with significantly lower richness of Plasmodium, Haemoproteus as well as overall haemosporidian parasite lineages, the former thus indicating more efficient protection against intracellular pathogens. Nonetheless, the latter associations were only detected when MHC diversity was assessed using cloning and not 454 pyrosequencing-based studies, nor across all genotyping methods combined. Our results indicate that high-MHC class I diversity might play a key role in providing qualitative resistance against diverse haemosporidian parasites in birds, but further clarification is needed for the origin of contrasting results when using different genotyping methods for MHC loci quantification.  相似文献   
124.
125.
The expansion of the cytokine-producing CD56(bright) NK cell subset is a main feature of lymphocyte reconstitution after allogeneic hematopoietic stem cell transplantation (HSCT). We investigated phenotypes and functions of CD56(bright) and CD56(dim) NK subsets from 43 HLA-matched non-T cell-depleted HSCT donor-recipient pairs. The early expansion of CD56(bright) NK cells gradually declined in the posttransplant period but still persisted for at least 1 year and was characterized by the emergence of an unusual CD56(bright)CD16(low) subset with an intermediate maturation profile. The activating receptors NKG2D and NKp46, but also the inhibitory receptor NKG2A, were overexpressed compared with donor CD56(bright) populations. Recipient CD56(bright) NK cells produced higher amounts of IFN-gamma than did their respective donors and were competent for degranulation. Intracellular perforin content was increased in CD56(bright) NK cells as well as in T cells compared with donors. IL-15, the levels of which were increased in the posttransplant period, is a major candidate to mediate these changes. IL-15 serum levels and intracellular T cell perforin were significantly higher in recipients with acute graft-vs-host disease. Altogether, CD56(bright) NK cells postallogeneic HSCT exhibit peculiar phenotypic and functional properties. Functional interactions between this subset and T cells may be important in shaping the immune response after HSCT.  相似文献   
126.
Bottlenecks in population size reduce genetic diversity and increase inbreeding, which can lead to inbreeding depression. It is thus puzzling how introduced species, which typically pass through bottlenecks, become such successful invaders. However, under certain theoretical conditions, bottlenecks of intermediate size can actually purge the alleles that cause inbreeding depression. Although this process has been confirmed in model laboratory systems, it has yet to be observed in natural invasive populations. We evaluate whether such purging could facilitate biological invasions by using the world-wide invasion of the ladybird (or ladybug) Harmonia axyridis. We first show that invasive populations endured a bottleneck of intermediate intensity. We then demonstrate that replicate introduced populations experience almost none of the inbreeding depression suffered by native populations. Thus, rather than posing a barrier to invasion as often assumed, bottlenecks, by purging deleterious alleles, can enable the evolution of invaders that maintain high fitness even when inbred.  相似文献   
127.
128.
Tropical forests are experiencing increasing impacts from a multitude of anthropogenic activities such as logging and conversion to agricultural use. These perturbations are expected to have strong impacts on ecological interactions and on the transmission dynamics of infectious diseases. To date, no clear picture of the effects of deforestation on vector-borne disease transmission has emerged. This is associated with the challenge of studying complex systems where many vertebrate hosts and vectors co-exist. To overcome this problem, we focused on an innately simplified system – a small oceanic island (São Tomé, Gulf of Guinea). We analyzed the impacts of human land-use on host-parasite interactions by sampling the bird community (1735 samples from 30 species) in natural and anthropogenic land use at different elevations, and screened individuals for haemosporidian parasites from three genera (Plasmodium, Haemoproteus, Leucocytozoon). Overall, Plasmodium had the highest richness but the lowest prevalence, while Leucocytozoon diversity was the lowest despite having the highest prevalence. Interestingly, co-infections (i.e. intra-host diversity) involved primarily Leucocytozoon lineages (95%). We also found marked differences between bird species and habitats. Some bird species showed low prevalence but harbored high diversity of parasites, while others showed high prevalence but were infected with fewer lineages. These infection dynamics are most likely driven by host specificity of parasites and intrinsic characteristics of hosts. In addition, Plasmodium was more abundant in disturbed habitats and at lower elevations, while Leucocytozoon was more prevalent in forest areas and at higher elevations. These results likely reflect the ecological requirements of their vectors: mosquitoes and black flies, respectively.  相似文献   
129.
We present the first representative and quantified overview of the indices used worldwide for assessing the biodiversity of coral reef fishes. On this basis, we discuss the suitability and drawbacks of the indices most widely used in the assessment of coral fish biodiversity. An extensive and systematic survey of the literature focused on coral reef fish biodiversity was conducted from 1990 up to the present. We found that the multicomponent aspect of biodiversity, which is considered as a key feature of biodiversity for numerous terrestrial and marine ecosystems, has been poorly taken into account in coral reef fish studies. Species richness is still strongly dominant while other diversity components, such as functional diversity, are underestimated even when functional information is available. We also demonstrate that the reason for choosing particular indices is often unclear, mainly based on empirical rationales and/or the reproduction of widespread habits, but generally with no clear relevance with regard to the aims of the studies. As a result, the most widely used indices (species richness, Shannon, etc.) would appear to be poorly suited to meeting the main challenges facing the monitoring of coral reef fish biodiversity in the future. Our results clearly show that coral reef scientists should rather take advantage of the multicomponent aspect of biodiversity. To facilitate this approach, we propose general guidelines to serve as a basis for the selection of indices that provide complementary and relevant information for monitoring the response of coral reef fish biodiversity in the face of structuring factors (natural or anthropic). The aim of these guidelines was to achieve a better match between the properties of the selected indices and the context of each study (e.g. expected effect of the main structuring factors, nature of data available).  相似文献   
130.
Biosynthesis of iron–sulphur (Fe‐S) proteins is catalysed by multi‐protein systems, ISC and SUF. However, ‘non‐ISC, non‐SUF’ Fe‐S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a ‘non‐ISC, non SUF’ component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a ‘degenerate’ A‐type carrier domain (ATC*) lacking Fe‐S cluster co‐ordinating Cys ligands. The Nfu domain binds a [4Fe‐4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo‐NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe‐S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe‐S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号