首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2783篇
  免费   244篇
  2023年   10篇
  2022年   24篇
  2021年   40篇
  2020年   22篇
  2019年   31篇
  2018年   43篇
  2017年   35篇
  2016年   66篇
  2015年   94篇
  2014年   142篇
  2013年   134篇
  2012年   164篇
  2011年   195篇
  2010年   138篇
  2009年   115篇
  2008年   143篇
  2007年   149篇
  2006年   151篇
  2005年   109篇
  2004年   152篇
  2003年   133篇
  2002年   127篇
  2001年   57篇
  2000年   59篇
  1999年   53篇
  1998年   44篇
  1997年   33篇
  1996年   33篇
  1995年   18篇
  1994年   24篇
  1993年   26篇
  1992年   38篇
  1991年   26篇
  1990年   36篇
  1989年   32篇
  1988年   25篇
  1987年   18篇
  1986年   27篇
  1985年   30篇
  1984年   22篇
  1983年   20篇
  1982年   18篇
  1981年   11篇
  1980年   8篇
  1979年   24篇
  1978年   21篇
  1977年   10篇
  1976年   11篇
  1974年   7篇
  1972年   11篇
排序方式: 共有3027条查询结果,搜索用时 15 毫秒
991.
Although brain-derived neurotrophic factor (BDNF) plays a central role in recovery after cerebral ischemia, little is known about cells involved in BDNF production after stroke. The present study testes the hypothesis that neurons are not the unique source of neosynthesized BDNF after stroke and that non neuronal-BDNF producing cells differ according to the delay after stroke induction. For this purpose, cellular localization of BDNF and BDNF content of each hemisphere were analysed in parallel before and after (4h, 24h and 8d) ischemic stroke in rats. Stroke of different severities was induced by embolization of the brain with variable number of calibrated microspheres allowing us to explore the association between BDNF production and neuronal death severity. The main results are that (a) unilateral stroke increased BDNF production in both hemispheres with a more intense and long-lasting effect in the lesioned hemisphere, (b) BDNF levels either of the lesioned or unlesioned hemispheres were not inversely correlated to neuronal death severity whatever the delay after stroke onset, (c) in the unlesioned hemisphere, stroke resulted in increased BDNF staining in neurons and ependymal cells (at 4h and 24h), (d) in the lesioned hemisphere, beside neurons and ependymal cells, microglial cells (at 24h), endothelial cells of cerebral arterioles (at 4h and 24h) and astrocytes (at 8d) exhibited a robust BDNF staining as well. Taken together, overall data suggest that non neuronal cells are able to produce substantial amount of BDNF after ischemic stroke and that more attention should be given to these cells in the design of strategies aimed at improving stroke recovery through BDNF-related mechanisms.  相似文献   
992.
The disease malaria, caused by the parasite Plasmodium falciparum, remains one of the most important causes of morbidity and mortality in sub-Saharan Africa. In the absence of an efficient vaccine, the medical treatment of malaria is dependent on the use of drugs. Since artemisinin is a powerful anti-malarial drug which has been proposed to target a particular Ca2+-ATPase (PfATP6) in the parasite, it has been important to characterize the molecular properties of this enzyme. PfATP6 is a 139?kDa protein composed of 1228 amino acids with a 39% overall identity with rabbit SERCA1a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a). PfATP6 conserves all sequences and motifs that are important for the function and/or structure of a SERCA, such as two high-affinity Ca2+-binding sites, a nucleotide-binding site and a phosphorylation site. We have been successful in isolating PfATP6 after heterologous expression in yeast and affinity chromatography in a pure, active and stable detergent-solubilized form. With this preparation, we have characterized and compared with the eukaryotic SERCA1a isoform the substrate (Ca2+ and ATP) -dependency for PfATP6 activity as well as the specific inhibition/interaction of the protein with drugs. Our data fully confirm that PfATP6 is a SERCA, but with a distinct pharmacological profile: compared with SERCA1a, it has a lower affinity for thapsigargin and much higher affinity for cyclopiazonic acid. On the other hand, we were not able to demonstrate any inhibition by artemisinin and were also not able to monitor any binding of the drug to the isolated enzyme. Thus it is unlikely that PfATP6 plays an important role as a target for artemisinin in the parasite P. falciparum.  相似文献   
993.
Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency frequently present cardiomyopathy and heartbeat disorders. However, the underlying factors, which may be of cardiac or extra cardiac origins, remain to be elucidated. In this study, we tested for metabolic and functional alterations in the heart from 3- and 7-mo-old VLCAD null mice and their littermate counterparts, using validated experimental paradigms, namely, 1) ex vivo perfusion in working mode, with concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates under various conditions; as well as 2) in vivo targeted lipidomics, gene expression analysis as well as electrocardiogram monitoring by telemetry in mice fed various diets. Unexpectedly, when perfused ex vivo, working VLCAD null mouse hearts maintained values similar to those of the controls for functional parameters and for the contribution of exogenous palmitate to β-oxidation (energy production), even at high palmitate concentration (1 mM) and increased energy demand (with 1 μM epinephrine) or after fasting. However, in vivo, these hearts displayed a prolonged rate-corrected QT (QTc) interval under all conditions examined, as well as the following lipid alterations: 1) age- and condition-dependent accumulation of triglycerides, and 2) 20% lower docosahexaenoic acid (an omega-3 polyunsaturated fatty acid) in membrane phospholipids. The latter was independent of liver but affected by feeding a diet enriched in saturated fat (exacerbated) or fish oil (attenuated). Our finding of a longer QTc interval in VLCAD null mice appears to be most relevant given that such condition increases the risk of sudden cardiac death.  相似文献   
994.
995.
996.
997.
998.
999.
1000.
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号