首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2841篇
  免费   321篇
  国内免费   1篇
  2021年   42篇
  2020年   30篇
  2019年   36篇
  2018年   31篇
  2017年   43篇
  2016年   75篇
  2015年   98篇
  2014年   101篇
  2013年   137篇
  2012年   151篇
  2011年   172篇
  2010年   103篇
  2009年   92篇
  2008年   102篇
  2007年   100篇
  2006年   125篇
  2005年   123篇
  2004年   104篇
  2003年   108篇
  2002年   126篇
  2001年   74篇
  2000年   88篇
  1999年   61篇
  1998年   31篇
  1997年   33篇
  1996年   29篇
  1995年   37篇
  1994年   33篇
  1993年   29篇
  1992年   47篇
  1991年   40篇
  1990年   47篇
  1989年   52篇
  1988年   37篇
  1987年   39篇
  1986年   30篇
  1985年   39篇
  1984年   41篇
  1983年   35篇
  1982年   30篇
  1981年   29篇
  1980年   15篇
  1979年   25篇
  1978年   27篇
  1975年   30篇
  1974年   22篇
  1973年   22篇
  1972年   15篇
  1971年   38篇
  1970年   19篇
排序方式: 共有3163条查询结果,搜索用时 15 毫秒
61.
62.
In Leuconostoc mesenteroides subsp. mesenteroides 19D, citrate is transported by a secondary citrate carrier (CitP). Previous studies of the kinetics and mechanism of CitP performed in membrane vesicles of L. mesenteroides showed that CitP catalyzes divalent citrate HCit2-/H+ symport, indicative of metabolic energy generation by citrate metabolism via a secondary mechanism (C. Marty-Teysset, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Biol. Chem. 270:25370-25376, 1995). This study also revealed an efficient exchange of citrate and D-lactate, a product of citrate/carbohydrate cometabolism, suggesting that under physiological conditions, CitP may function as a precursor/product exchanger rather than a symporter. In this paper, the energetic consequences of citrate metabolism were investigated in resting cells of L. mesenteroides. The generation of metabolic energy in the form of a pH gradient (delta pH) and a membrane potential (delta psi) by citrate metabolism was found to be largely dependent on cometabolism with glucose. Furthermore, in the presence of glucose, the rates of citrate utilization and of pyruvate and lactate production were strongly increased, indicating an enhancement of citrate metabolism by glucose metabolism. The rate of citrate metabolism under these conditions was slowed down by the presence of a membrane potential across the cytoplasmic membrane. The production of D-lactate inside the cell during cometabolism was shown to be responsible for the enhancement of the electrogenic uptake of citrate. Cells loaded with D-lactate generated a delta psi upon dilution in buffer containing citrate, and cells incubated with citrate built up a pH gradient upon addition of D-lactate. The results are consistent with an electrogenic citrate/D-lactate exchange generating in vivo metabolic energy in the form of a proton electrochemical gradient across the membrane. The generation of metabolic energy from citrate metabolism in L. mesenteroides may contribute significantly to the growth advantage observed during cometabolism of citrate and glucose.  相似文献   
63.
64.
Collapsible-tube flow with self-excited oscillations has been extensively investigated. Though physiologically relevant, forced oscillation coupled with self-excited oscillation has received little attention in this context. Based on an ODE model of collapsible-tube flow, the present study applies modern dynamics methods to investigate numerically the responses of forced oscillation to a limit-cycle oscillation which has topological characteristics discovered in previous unforced experiments. A devil's staircase and period-doubling cascades are presented with forcing frequency and amplitude as control parameters. In both cases, details are provided in a bifurcation diagram. Poincaré sections, a frequency spectrum and the largest Lyapunov exponents verify the existence of chaos in some circumstances. The thin fractal structure found in the strange attractors is believed to be a result of high damping and low stiffness in such systems.  相似文献   
65.
At present, the ergosterol and acetate-to-ergosterol techniques are generally considered to be the methods of choice to quantify fungal biomass, growth rate, and productivity under natural conditions. Both methods rely on the accurate isolation and quantification of ergosterol, a major membrane component of eumycotic fungi. Taking advantage of the solid-phase extraction (SPE) technique, we present a novel method to determine the ergosterol concentration in lipid extracts derived from plant tissues and dead organic matter colonized by fungi. In this method, a primary alkaline extract is acidified and passed through a reversed-phase (C(inf18)) SPE column. The column is then washed with an alkaline methanol-water solution to eliminate interfering substances and increase pH and is thoroughly dried in air. Ergosterol is eluted with alkaline isopropanol. This eluting solvent was chosen to produce a strongly basic pH of the final extract and thus confer stability on the ergosterol molecule before high-performance liquid chromatography analysis. The recovery of ergosterol from plant tissues and the O(infhf) horizon of a woodland soil ranged from 85 to 98%, and the overall extraction efficiency was similar to that obtained by a conventional procedure involving liquid-liquid extraction. Potential pitfalls of ergosterol analysis by SPE include (i) insufficient acidification before sample loading on the extraction column, resulting in a poor affinity of ergosterol for the sorbent; (ii) incomplete drying of the sorbent bed before the elution step; and (iii) chemical breakdown of ergosterol after elution, which was found to be related to a low pH of the final extract and a high concentration of matrix compounds. When these pitfalls are avoided, SPE is an attractive alternative to existing methods of ergosterol analysis of environmental samples.  相似文献   
66.
67.
68.
69.
Human cell lines derived from three epithelial carcinomas (CaSki, HeLa, SiHa), one B lymphoma (BL60), one promyelocytic (HL60), one monocytic (U937) leukemia, one chronic myelogenous leukemia (sensitive K562S; multichemoresistant K562R) and normal human skin fibroblasts were compared for their capacity of staining with rhodamine 123 (Rh 123) and their kinetics of dye exclusion. Cells were exposed for 30 min to 10 g/ml of Rh 123 in culture medium; fluorescence intensity was measured by flow cytometry immediately or 1, 2, 3 and 4 h after staining. The highest fluorescence intensity was observed in carcinoma cell lines; there was no incorporation in multichemoresistant K562R cells. Exclusion of Rh 123 was evaluated from 0 to 4 h, both by flow cytometry and by fluorimetry. Fluorescence intensity measured by flow cytometry decreased slightly in carcinoma and leukemia cells and rapidly in fibroblasts. In all cell lines Rh 123 exclusion was inhibited by 40 mol/L verapamil and 5 mmol/L probenecid. Thus, incorporation and exclusion of Rh 123 allows distinction between normal and tumoral cells; moreover, inhibition of exclusion by verapamil and probenecid favors the involvement of active cell membrane mechanisms in the exclusion process.Abbreviations PBS phosphate-buffered saline - Rh 123 rhodamine 123  相似文献   
70.
Methanobacterium thermoautotrophicum was grown on a defined mineral salts medium under strictly anaerobic conditions with H2 and CO2 as the sole energy and carbon sources, respectively. The cultivation medium was optimized with respect to non-organic components including Se(IV), W(VI), N, Ni(II), Fe(II), Co(II) and Mo(VI). Sulphide concentration in the medium was maintained constant using an on-line regulatory system by the addition of 0.5 M Na2S. A maximum supply rate of 0.6 vvm of a mixture of 80% H2 and 20% CO2 was achieved for the gaseous substrates. Under these conditions a specific growth rate of 0.30 h–1 and a cell concentration of 4.8 g cell dry weight (DW) l–1, representing a 140% increase over previously published results, were obtained. The growth yield of 2.3 g DW mol–1 CH4 was similar to published values. However, the overall specific productivity was enhanced from 11 mmol CH4 g–1 DW h–1 to 24 mmol CH4 g–1 DW h–1, corresponding to an improvement of 120%. Correspondence to: U. von Stockar  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号