首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1110篇
  免费   148篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2016年   21篇
  2015年   14篇
  2014年   24篇
  2013年   61篇
  2012年   32篇
  2011年   45篇
  2010年   35篇
  2009年   30篇
  2008年   51篇
  2007年   39篇
  2006年   36篇
  2005年   33篇
  2004年   35篇
  2003年   56篇
  2002年   40篇
  2001年   34篇
  2000年   38篇
  1999年   30篇
  1998年   21篇
  1997年   18篇
  1996年   18篇
  1995年   18篇
  1994年   10篇
  1993年   21篇
  1992年   21篇
  1991年   28篇
  1990年   19篇
  1989年   33篇
  1988年   25篇
  1987年   24篇
  1986年   20篇
  1985年   26篇
  1984年   30篇
  1983年   24篇
  1982年   24篇
  1981年   14篇
  1980年   12篇
  1979年   21篇
  1978年   19篇
  1977年   10篇
  1976年   14篇
  1975年   15篇
  1974年   23篇
  1973年   11篇
  1972年   8篇
  1970年   4篇
  1968年   10篇
排序方式: 共有1258条查询结果,搜索用时 15 毫秒
991.
A physico-chemical and structural characterization of three 1,4-beta-D-glucan cellobiohydrolases (EC. 3.2.1.91), isolated from a culture filtrate of the white-rot fungus Phanerochaete chrysosporium, reveals that the cellulolytic enzyme secretion pattern and thus the general degradation strategy for P. chrysosporium is similar to that of Trichoderma reesei. Partial sequence data show that two of the isolated enzymes, i.e., CBHI, pI 3.82 and CBH62, pI 4.85, are homologous with CBHI and EGI from T. reesei; while, the third, i.e., CBH50, pI 4.87, is homologous to T. reesei CBHII. Limited proteolysis with papain cleaved each of the three enzymes into two domains: a core protein which retained full catalytic activity against low molecular weight substrates and a peptide fragment corresponding to the cellulose binding domain, in striking similarity to the structural organization of T. reesei. CBHI and CBH62 have their binding domain located at the C-terminus, whereas in CBH50 it is located at the N-terminus. It is evident that synergistically acting cellobiohydrolases is a general requirement for efficient hydrolysis of crystalline cellulose by cellulolytic fungi.  相似文献   
992.
Prostate-specific antigen (PSA), produced by prostate cells, provides an excellent serum marker for prostate cancer. It belongs to the human kallikrein family of enzymes, a second prostate-derived member of which is human glandular kallikrein-1 (hK2). Active PSA and hK2 are both 237-residue kallikrein-like proteases, based on sequence homology. An hK2 model structure based on the serine protease fold is presented and compared to PSA and six other serine proteases in order to analyze in depth the role of the surface-accessible loops surrounding the active site. The results show that PSA and hK2 share extensive structural similarity and that most amino acid replacements are centered on the loops surrounding the active site. Furthermore, the electrostatic potential surfaces are very similar for PSA and hK2. PSA interacts with at least two serine protease inhibitors (serpins): alpha-1-antichymotrypsin (ACT) and protein C inhibitor (PCI). Three-dimensional model structures of the uncleaved ACT molecule were developed based upon the recent X-ray structure of uncleaved antithrombin. The serpin was docked both to PSA and hK2. Amino acid replacements and electrostatic complementarities indicate that the overall orientation of the proteins in these complexes is reasonable. In order to investigate PSA's heparin interaction sites, electrostatic computations were carried out on PSA, hK2, protein C, ACT, and PCI. Two heparin binding sites are suggested on the PSA surface and could explain the enhanced complex formation between PSA and PCI, while inhibiting the formation of the ACT-PSA complex, PSA, hK2, and their preliminary complexes with ACT should facilitate the understanding and prediction of structural and functional properties for these important proteins also with respect to prostate diseases.  相似文献   
993.
994.
Earlier experimental studies have demonstrated the ability of day-migrating birds to perform migration under overcast skies, thereby indicating use of cues other than solar. The orientation behaviour of the chaffinch, a diurnal migrant, was investigated in orientation cage experiments during the autumn migration period. The aim of our experiments was to examine the relationship between different orientation cues and the influence of body condition on directional choices. We obtained the following results: 1. Chaffinches displayed a bimodal distribution of headings along a SW-NE axis when tested in the local geomagnetic field (controls); 2. When the geomagnetic field was experimentally deflected 90° counterclockwise, the chaffinches responded by changing their preferred axial orientation to SE-NW; and 3. The predictive power of stored fat reserves became evident when both the control and experimental samples were subdivided into fat and lean individuals. The majority of fat controls orientated towards a seasonally appropriate SW direction, whereas lean controls chose mean directions towards the NE. Experimentals followed the same pattern, but with the expected deflection, i.e. fat birds selected SE headings and lean individuals chose a NW mean direction.  相似文献   
995.
Introduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia , the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al ., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK -mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB-dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK -mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild-type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell-associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.  相似文献   
996.
Cellobiohydrolase I (CBHI) of Trichoderma reesei has two functional domains, a catalytic core domain and a cellulose binding domain (CBD). The structure of the CBD reveals two distinct faces, one of which is flat and the other rough. Several other fungal cellulolytic enzymes have similar two-domain structures, in which the CBDs show a conserved primary structure. Here we have evaluated the contributions of conserved amino acids in CBHI CBD to its binding to cellulose. Binding isotherms were determined for a set of six synthetic analogues in which conserved amino acids were substituted. Two-dimensional NMR spectroscopy was used to assess the structural effects of the substitutions by comparing chemical shifts, coupling constants, and NOEs of the backbone protons between the wild-type CBD and the analogues. In general, the structural effects of the substitutions were minor, although in some cases decreased binding could clearly be ascribed to conformational perturbations. We found that at least two tyrosine residues and a glutamine residue on the flat face were essential for tight binding of the CBD to cellulose. A change on the rough face had only a small effect on the binding and it is unlikely that this face interacts with cellulose directly.  相似文献   
997.
Construction of a genetic linkage map of the laboratory rat, Rattus norvegicus, establishes the rat as a genetic model. Allele sizes were reported for 432 simple sequence length polymorphisms (SSLPs) genotyped in 12 different substrains belonging to nine different inbred strains of rats. However, these nine strains represent only a fraction of the more than 140 inbred strains available. If allele sizes are not known, alternative indices of markers' polymorphism content can be used, such as heterozygosity (H) and polymorphism information content (PIC). Here, we have determined heterozygosity scores and PIC values for all markers of the rat genetic linkage map, and we evaluate the predictability of the heterozygosity and the PIC values. Correlation analysis between the nine inbred strains reported for the rat map and ten test strains yielded r=0.42 and r=0.44 for heterozygosity and PIC values, respectively. While the correlation of the indices between the two groups of animals is low, these indices do provide a means of predicting whether a genetic marker will be informative in strains where allele sizes are not known.  相似文献   
998.
Inside-out spinach thylakoid vesicles can be isolated by aqueous polymer two-phase partition following mechanical disruption of spinach chloroplast lamellae (Andersson, B and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472) and a mechanism for their formation has been experimentally supported (Andersson B., Sundby, C. and Albertsson, P.-Å. (1980) Biochim. Biophys. Acta 599, 391–402). Upon disruption, inside-out vesicles may form under stacking conditions, e.g., in 5 mM MgCl2 or 150 mM NaCl, while disruption under destacking conditions, i.e., low concentrations of monovalent cations, gives only right-side-out vesicles. This study deals with the sidedness stability of the isolated inside-out thylakoid vesicles when stored or disrupted by sonication in various ionic environments. The sidedness of thylakoid vesicles was determined by their partition behaviour in an aqueous polymer phase system, direction of proton translocation and aggregation response (stacking) upon addition of MgCl2. The results show that no spontaneous change from everted to normal sidedness occurs upon storage of the inside-out thylakoids. In contrast, sonication of these vesicles under destacking conditions (5 mM NaCl) results in a nearly complete transformation to right-side-out orientation. Also, in the presence of 5 mM MgCl2 or 150 mM NaCl, sonication induced a change in sidedness of the inside-out vesicles but to a lesser extent. The stabilizing effect on the everted sidedness by cations was shown to be a result of preventing vesicle fragmentation by maintaining internal thylakoid appresions rather than by influencing the membrane curvature during resealing. Once released from an appressed state by overcoming the stacking forces, an opened thylakoid membrane shows an absolute preference for turning right-side-out in all media tested. These results strongly support the proposed formation mechanism, in which pairs of neighbouring grana membranes after disruption reseal with each other promoted by their close proximity. Since the inside-out vesicles derive from the grana appressions, their transformation back to normal sidedness exposes the outer membrane surface of appressed thylakoids. This region of the thylakoid membrane is normally hidden in the grana appressions and removal of grana leads concomitantly to lateral intermixing with non-appressed thylakoid components. Thus the current isolation of right-sided vesicles derived from the grana appressions should be a new tool for studies on the molecular organization of the thylakoid membrane.  相似文献   
999.
Starting from cellulose samples prepared from cotton lintes and differing in lattice type, crystallinity and fibrillar morphology, enzymatic hydrolysis of fibre cellulose has been studied employing complete enzyme systems from Trichoderma, Sporotrichum, Gliocladium and Penicillium as well as isolated endo- and exo-1,4-β-glucanases from Trichoderma reesei and Sporotorichum pulverulentum. The effect of hydrolysis was characterized by content of reducing sugars (RS) and of glucose in the hydrolyzate as well as by DP and X-ray diffraction pattern of the residues. With all the complete enzyme systems investigated about the same order of degradability was found with a series of substrates differing in physical structure. The hydrolysis effect of cellulase from S. pulverulentum proved to be sensitive to the gas atmosphere above the system (N2 or O2), probably due to the interaction of an O2-atmosphere with the activity of the cellubiose-oxydase existent in the system. Isolated endoglucanase from S. pulverulentum and T.reesei still led to a considerable formation of RS and glucose, a corrosion of the fibre surface and a significant descrease in DP. Influence of substrate physical structure was rather small with regard to RS, but still considerable with regard to residue-DP. The effect of isolated exoglucanases depends largely on the chemical structure of the cellobiohydrolase in question, as demonstrated with the two samples “CBH I” and “CBH II” from T. reesei. With CBH I, rather resembling endo-glucanase behaviour, a considerable formation of RS and a significant corrosion of the fibre surface has been observed. On the other hand, only negligibly small amounts of RS were formed by CBH II. Results are discussed with regard to the complex mechanism of cellulase action on fibrous cellulose and with regard to the relevance of different parameters of physical structure of cellulose in connection with enzymatic hydrolysis. A remarkable acceleration of the Cellulose III → Cellulose I lattice transition due to chain fragmentations in the presence of cellulase can be concluded the experiments.  相似文献   
1000.
Summary Blood-brain barrier lesions were produced on rabbits which had been depleted of their endogenous monoamines with a large dose of reserpine. After the lesion, catecholamines and the blood-brain barrier indicator dye trypan blue were injected. After freeze-drying, the cellular distribution of the injected substances was observed in the fluorescence microscope.It was found that, in the injured areas, the monoamines and trypan blue had penetrated into the brain parenchyma, where the monoamines were taken up and concentrated in nerve terminals. Trypan blue was found diffusely in the neuropil, while the nerve cell bodies and axons exhibited no fluorescence of trypan blue. On the control side, this type of fluorescence of catecholamines or trypan blue could not be detected.The lesions applied seem to be quite specific for the blood-brain barrier, as an active and energy-dependent uptake of catecholamines could be demonstrated in central monoamine nerve terminals. Thus the results also show that these terminals have the same reserpine-resistant membrane pump in vivo as earlier demonstrated for peripheral adrenergic neurons, and for central neurons in vitro.This investigation has been supported by research grants (B 66-158 and B 66-257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-02) from the National Institute of Neurological Diseases and Blindness. For generous supplies of drugs we thank the Swedish Ciba, Stockholm, Sweden for reserpine (Serpasil®), the Swedish Pfizer, Stockholm, Sweden for nialamide (Niamid®) and Hoechst Anilin AB, Göteborg, Sweden for -methylnoradrenaline (Corbasil®).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号