首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   83篇
  921篇
  2022年   5篇
  2021年   11篇
  2020年   11篇
  2019年   15篇
  2018年   10篇
  2017年   17篇
  2016年   29篇
  2015年   32篇
  2014年   38篇
  2013年   59篇
  2012年   54篇
  2011年   62篇
  2010年   34篇
  2009年   30篇
  2008年   40篇
  2007年   45篇
  2006年   41篇
  2005年   32篇
  2004年   47篇
  2003年   34篇
  2002年   35篇
  2001年   13篇
  2000年   20篇
  1999年   11篇
  1998年   11篇
  1997年   3篇
  1996年   10篇
  1995年   7篇
  1994年   3篇
  1993年   6篇
  1992年   16篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   13篇
  1987年   10篇
  1986年   14篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   3篇
  1972年   5篇
  1970年   2篇
  1968年   2篇
  1958年   2篇
排序方式: 共有921条查询结果,搜索用时 0 毫秒
11.
Eighteen hours of immobilization stress, accompanied by food and water deprivation, increased liver metallothionein (MT) but decreased kidney MT levels. Food and water deprivation alone had a significant effect only on liver MT levels. In contrast, stress and food and water deprivation increased both liver and kidney lipid peroxidation levels, indicating that the relationship between MT and lipid peroxidation levels (an index of free radical production) is unclear. Adrenalectomy increased both liver and kidney MT levels in basal conditions, whereas the administration of corticosterone in the drinking water completely reversed the effect of adrenalectomy, indicating an inhibitory role of glucocorticoids on MT regulation in both tissues. Changes in glutathione (GSH) metabolism produced significant effects on kidney MT levels. Thus, the administration of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased kidney GSH and increased kidney MT content, suggesting that increased cysteine pools because of decreased GSH synthesis might increase kidney MT levels through an undetermined mechanism as it appears to be the case in the liver. However, attempts to increase kidney MT levels by the administration of cysteine or GSH were unsuccesful, in contrast to what is known for the liver. The present results suggest that there are similarities but also substantial differences between liver and kidney MT regulation in these experimental conditions.  相似文献   
12.
The nucleotide sequence (6138 bp) of a microaerobically inducible region (hupV/VI) from the Rhizobium leguminosarum bv. viciae hydrogenase gene cluster has been determined. Six genes, arranged as a single operon, were identified, and designated hypA, B, F, C, D and E based on the sequence similarities of all of them, except hypF, to genes from the hydrogenase pleiotropic operon (hyp) from Escherichia coli. The gene products from hypBFCDE were identified by in vivo expression analysis in E. coli, and their molecular sizes were consistent with those predicted from the nucleotide sequence. Transposon Tn5 insertions into hypB, hypF, hypD and hypE resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas, but still were able to synthesize the polypeptide for the hydrogenase large subunit. The gene products HypA, HypB, HypF and HypD contained CX2C motifs characteristic of metal-binding proteins. In addition, HypB bore a long histidine-rich stretch of amino acids near the N-terminus, suggesting a possible role in nickel binding for this protein. The gene product HypF, which was translationally coupled to HypB, presented two cysteine motifs (CX2CX81CX2C) with a capacity to form zinc finger-like structures in the N-terminal third of the protein. A role in nickel metabolism in relation to hydrogenase synthesis is postulated for proteins HypB and HypF.  相似文献   
13.
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.  相似文献   
14.
The NADH oxidase activity of isolated vesicles of soybean (Glycine max cv Williams 82) plasma membranes and elongation growth of 1-cm-long hypocotyl segments were stimulated by auxins (indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid [2,4-D]). The auxin-induced stimulations of both NADH oxidase and growth were prevented by the thiol reagents N-ethylmaleimide, p-chloromercuribenzoate, 5,5[prime]-dithiobis(2-nitrophenylbenzoic acid), dithiothreitol, and reduced glutathione. These same reagents largely were without effect on or stimulated slightly the basal levels of NADH oxidase and growth when assayed in the absence of auxins. In the presence of dithiothreitol or reduced glutathione, both 2,4-D and indole-3-acetic acid either failed to stimulate or inhibited the NADH oxidase activity. The rapidity of the response at a given concentration of thiol reagent and the degree of inhibition of the 2,4-D-induced NADH oxidase activity were dependent on order of reagent addition. If the thiol reagents were added first, auxin stimulations were prevented. If auxins were added first, the inhibitions by the thiol reagents were delayed or higher concentrations of thiol reagents were required to achieve inhibition. The results demonstrate a fundamental difference between the auxin-stimulated and the constitutive NADH oxidase activities of soybean plasma membranes that suggest an involvement of active-site thiols in the auxin-stimulated but not in the constitutive activity.  相似文献   
15.
The structure of the potassium channel blocker agitoxin 2 was solved by solution NMR methods. The structure consists of a triple-stranded antiparallel beta-sheet and a single helix covering one face of the beta-sheet. The cysteine side chains connecting the beta-sheet and the helix form the core of the molecule. One edge of the beta-sheet and the adjacent face of the helix form the interface with the Shaker K+ channel. The fold of agitoxin is homologous to the previously determined folds of scorpion venom toxins. However, agitoxin 2 differs significantly from the other channel blockers in the specificity of its interactions. This study was thus focused on a precise characterization of the surface residues at the face of the protein interacting with the Shaker K+ channel. The rigid toxin molecule can be used to estimate dimensions of the potassium channel. Surface-exposed residues, Arg24, Lys27, and Arg31 of the beta-sheet, have been identified from mutagenesis studies as functionally important for blocking the Shaker K+ channel. The sequential and spatial locations of Arg24 and Arg31 are not conserved among the homologous toxins. Knowledge on the details of the channel-binding sites of agitoxin 2 formed a basis for site-directed mutagenesis studies of the toxin and the K+ channel sequences. Observed interactions between mutated toxin and channel are being used to elucidate the channel structure and mechanisms of channel-toxin interactions.  相似文献   
16.
The incorporation of [14C] N-ethylmaleimide reveals fast and slow-reacting sulfhydryl groups in sarcoplasmic reticulum. Two proteins react with the label: a fast-reacting glycoprotein recently isolated (Ikemoto, Cucchiaro and Garcia (1976) J. Cell Biol.70, 290a), and the Ca2+-ATPase. Labeling sarcoplasmic reticulum with a maleimide spin label gives a similar pattern. The spectra of maleimide-spin-labeled sarcoplasmic reticulum have both ‘strongly’ and ‘weakly’ immobilized components. Maleimide-spin-labeled purified Ca2+-ATPase, or sarcoplasmic reticulum labeled first with N-ethylmaleimide, and then with maleimide spin label, show spectra devoid of the ‘weakly’ immobilized component; the latter is enhanced in partially purified glycoprotein obtained from spin-labeled sarcoplasmic reticulum. This indicates that spectra from maleimide-spin-labeled sarcoplasmic reticulum do not reflect exclusively the state of the Ca2+-ATPase enzyme.  相似文献   
17.
A fundamental characteristic of vascular endothelium is that it exists as a monolayer, a condition that must be met in both vascular growth and repair. Maintenance of the monolayer is important both for the exchange of nutrients and for interactions between blood solutes and endothelial enzymes and transport systems. We have used time-lapse cinematography to compare proliferative behavior of bovine pulmonary endothelial cells in (1) establisment of a monolayer from a low-density seed (7.5 × 104 cells in a 60 mm dish) and (2) restitution of a confluent monolayer (approx. 2.9 × 106 cells in a 60 mm dish) following a mechanical wound (removal of cells from an area 5 × 15 mm by scraping). Culture 2 was not refed after wounding. In culture 2, approx. 30% of the cells accounted for repopulation (confluence in 40 hr). In culture I, all cells entered into division. Participating cells of culture 2 began division immediately (69 divisions/filmed area in 10 hr, vs. four divisions in culture I). Interdivision times (IDT) were longer and relatively constant in culture I until near confluence; none were < 10 h, whereas in 2, 24% of the IDT's were ≤ 10 hr. Remarkably, IDTs of culture 2 decreased steadily until confluence was re-established. Cell migration in culture 1 was multidirectional while direction of migration in culture 2 was always into the wound area. Mean migration rate (MIG) in culture 2 was related to the site of origin of the cells, those dividing farthest from the unwounded area had fastest MIGs. Neither culture formed more than a single layer of cells. Although the cell kinetics of cultures 1 and 2 differed, the same goal, confluence, was achieved in either case.  相似文献   
18.
The effect of mexiletine on oxygen and glucose consumption was studied both in homogenate and slices of brain, liver and myocardium of Wistar rats. Oxygen consumption was detected by means of Warburg's manometric techniques, and glucose utilization by the enzymatic method of glucose oxidase. Whilst glucose uptake was not modified in any of the studied preparations, mexiletine promoted a significant increase of oxygen consumption in the homogenized slices, and an inhibition in the intact tissue.  相似文献   
19.
20.
The hydrolysis of [3H]inositol 1,4,5-trisphosphate by a soluble fraction and by isolated transverse tubule and sarcoplasmic reticulum membranes from frog skeletal muscle was studied. Transverse tubule membranes displayed rates of hydrolysis several-fold higher than those of sacroplasmic reticulum and soluble fraction; Km and Vmax were 25.2 microM and 44.1 nmol/mg/min, respectively. Transverse tubule membranes sequentially hydrolyzed inositol trisphosphate to inositol bisphosphate, inositol 1-phosphate and inositol, indicating that these membranes have inositol bis- and monophosphatases in addition to inositol trisphosphatase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号