首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   178篇
  1832篇
  2022年   15篇
  2021年   24篇
  2020年   15篇
  2019年   11篇
  2018年   26篇
  2017年   19篇
  2016年   39篇
  2015年   68篇
  2014年   79篇
  2013年   95篇
  2012年   116篇
  2011年   87篇
  2010年   55篇
  2009年   71篇
  2008年   89篇
  2007年   85篇
  2006年   87篇
  2005年   114篇
  2004年   92篇
  2003年   80篇
  2002年   78篇
  2001年   21篇
  2000年   18篇
  1999年   26篇
  1998年   20篇
  1997年   22篇
  1996年   25篇
  1995年   30篇
  1994年   24篇
  1993年   20篇
  1992年   19篇
  1991年   13篇
  1990年   16篇
  1989年   19篇
  1988年   9篇
  1987年   11篇
  1986年   13篇
  1984年   11篇
  1982年   13篇
  1981年   8篇
  1980年   7篇
  1977年   11篇
  1976年   7篇
  1975年   11篇
  1974年   12篇
  1973年   7篇
  1969年   7篇
  1968年   8篇
  1966年   9篇
  1965年   8篇
排序方式: 共有1832条查询结果,搜索用时 15 毫秒
121.
IntroductionThe pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology.MethodsALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control.ResultsALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration.ConclusionsALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0651-0) contains supplementary material, which is available to authorized users.  相似文献   
122.
Two nucleotide-based probes were designed and synthesized in order to enrich samples for specific classes of proteins by affinity-based protein profiling. We focused on the profiling of adenine nucleotide-binding proteins. Two properties were considered in the design of the probes: the bait needs to bind adenine nucleotide-binding proteins with high affinity and carry a second functional group suitable and easily accessible for coupling to a chromatography resin. For this purpose, we synthesized p-biotinyl amidobenzoic acid-ATP (p-BABA-ATP) and p-biotinyl aminomethylbenzoic acid-ATP (p-BAMBA-ATP). p-BABA-ATP and p-BAMBA-ATP both bind to ATP-binding cassette (ABC) proteins with at least 10-fold higher affinity than ATP. Several ABC transporters could be enriched using p-BABA-ATP or p-BAMBA-ATP.  相似文献   
123.
124.

Background

While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions.

Methodology/Principal Findings

We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 Å resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor.

Conclusions/Significance

The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.  相似文献   
125.
The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited. We employ molecular dynamics simulations in explicit solvent to study the spontaneous aggregation process of steric zipper peptide segments from the tau protein and insulin in atomistic detail. Starting from separated chains with random conformations, we find a rapid formation of structurally heterogeneous, -sheet rich oligomers, emerging from multiple bimolecular association steps and diverse assembly pathways. Furthermore, our study provides evidence that aggregate intermediates as small as dimers can be kinetically trapped and thus affect the structural evolution of larger oligomers. Alternative aggregate structures are found for both peptide sequences in the different independent simulations, some of which feature characteristics of the known steric zipper conformation (e.g., -sheet bilayers with a dry interface). The final aggregates interconvert with topologically distinct oligomeric states exclusively via internal rearrangements. The peptide oligomerization was analyzed through the perspective of a minimal oligomer, i.e., the dimer. Thereby all observed multimeric aggregates can be consistently mapped onto a space of reduced dimensionality. This novel method of conformational mapping reveals heterogeneous association and reorganization dynamics that are governed by the characteristics of peptide sequence and oligomer size.  相似文献   
126.
Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed "unlinkase," that recognizes and cleaves the unique 5' tyrosyl-RNA phosphodiester bond found at the 5' end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate.  相似文献   
127.
128.
129.
130.
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3′UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3′UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3′UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号