首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   182篇
  2022年   9篇
  2021年   23篇
  2020年   13篇
  2019年   11篇
  2018年   25篇
  2017年   18篇
  2016年   36篇
  2015年   69篇
  2014年   74篇
  2013年   88篇
  2012年   111篇
  2011年   85篇
  2010年   54篇
  2009年   66篇
  2008年   88篇
  2007年   80篇
  2006年   88篇
  2005年   114篇
  2004年   91篇
  2003年   78篇
  2002年   77篇
  2001年   20篇
  2000年   16篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   25篇
  1995年   32篇
  1994年   22篇
  1993年   20篇
  1992年   20篇
  1991年   13篇
  1990年   13篇
  1989年   19篇
  1988年   9篇
  1987年   10篇
  1986年   14篇
  1985年   10篇
  1984年   11篇
  1982年   14篇
  1980年   8篇
  1979年   10篇
  1977年   13篇
  1976年   12篇
  1975年   11篇
  1974年   12篇
  1973年   9篇
  1968年   9篇
  1966年   9篇
  1965年   10篇
排序方式: 共有1806条查询结果,搜索用时 671 毫秒
171.
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four alpha-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).  相似文献   
172.
Cell robustness and complexity have been recognized as unique features of biological systems. Such robustness and complexity of metabolic-reaction systems can be explored by discovering, or identifying, the multiple flux distributions (MFD) and redundant pathways that lead to a given external state; however, this is exceedingly cumbersome to accomplish. It is, therefore, highly desirable to establish an effective computational method for their identification, which, in turn, gives rise to a novel insight into the cellular function. An effective approach is proposed for complementarily identifying MFD in metabolic flux analysis and multiple metabolic pathways (MMP) in structural pathway analysis. This approach judiciously integrates flux balance analysis (FBA) based on linear programming and the graph-theoretic method for determining reaction pathways. A single metabolic pathway, with the concomitant flux distribution and the overall reaction manifesting itself as the desired phenotype under some environmental conditions, is determined by FBA from the initial candidate sequence of metabolic reactions. Subsequently, the graph-theoretic method recovers all feasible MMP and the corresponding MFD. The approach's efficacy is demonstrated by applying it to the in silico Escherichia coli model under various culture conditions. The resultant MMP and MFD attaining a unique external state reveal the surprising adaptability and robustness of the intricate cellular network as a key to cell survival against environmental or genetic changes. These results indicate that the proposed approach would be useful in facilitating drug discovery.  相似文献   
173.
174.
SR protein-specific kinase-1 (SRPK-1) has been identified as a validated target for hepatitis B virus (HBV). A series of novel tricyclic quinoxaline derivatives was designed and synthesised as potential kinase inhibitory antiviral agents and was found to be active and selective for SRPK-1 kinase. Most of these novel compounds have drug-like properties according to experimentally determined LogP and LogS values.  相似文献   
175.
176.
The Nuclear Receptor Signaling Atlas (NURSA) was developed by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute on Aging (NIA), and the National Cancer Institute (NCI) of the National Institutes of Health (NIH); the aim of NURSA is to utilize classical approaches to validate existing hypotheses and exploit new and emerging technologies to formulate and test new hypotheses that might elucidate the program of nuclear receptor (NR) structure, function, and role in disease. The means for carrying out this ambitious program required development of interactions among investigators and the combined application of new high-throughput technologies and existing approaches to allow for both mechanistic studies and accrual of large datasets in a discovery-based research effort, all leading to advances with implications for the missions of the NIDDK, NIA, and NCI. A team-based multidisciplinary approach has allowed for both objectives to proceed simultaneously, tied together via a central bioinformatics resource and one web-accessible venue (www.nursa.org). The ultimate goals for the NURSA consortium are to: 1) establish the mechanistic principles of NR function, 2) characterize NR-coregulator complex formation and regulation, 3) map protein-protein interactions for coregulators, 4) identify candidate downstream target genes of NR action, 5) identify target tissue expression of NRs, 6) understand the regulation of NR expression and, 7) integrate existing and emerging information through NURSA bioinformatics tools.  相似文献   
177.
Relations in biomedical ontologies   总被引:5,自引:0,他引:5  
To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.  相似文献   
178.
Acetylcholine receptors (AChRs) mediate synaptic transmission at the neuromuscular junction, and structural and functional analysis has assigned distinct functions to the fetal (alpha2beta(gamma)delta) and adult types of AChR (alpha2beta(epsilon)delta). Mice lacking the epsilon-subunit gene die prematurely, showing that the adult type is essential for maintenance of neuromuscular synapses in adult muscle. It has been suggested that the fetally and neonatally expressed AChRs are crucial for muscle differentiation and for the formation of the neuromuscular synapses. Here, we show that substitution of the fetal-type AChR with an adult-type AChR preserves myoblast fusion, muscle and end-plate differentiation, whereas it substantially alters the innervation pattern of muscle by the motor nerve. Mutant mice form functional neuromuscular synapses outside the central, narrow end-plate band region in the diaphragm, with synapses scattered over a wider muscle territory. We suggest that one function of the fetal type of AChR is to ensure an orderly innervation pattern of skeletal muscle.  相似文献   
179.
CXCL12 (stromal cell-derived factor 1) is a unique biological ligand for the chemokine receptor CXCR4. We previously reported that treatment with a specific CXCR4 antagonist, AMD3100, exerts a beneficial effect on the development of collagen-induced arthritis (CIA) in the highly susceptible IFN-γ receptor-deficient (IFN-γR KO) mouse. We concluded that CXCL12 plays a central role in the pathogenesis of CIA in IFN-γR KO mice by promoting delayed type hypersensitivity against the auto-antigen and by interfering with chemotaxis of CXCR4+ cells to the inflamed joints. Here, we investigated whether AMD3100 can likewise inhibit CIA in wild-type mice and analysed the underlying mechanism. Parenteral treatment with the drug at the time of onset of arthritis reduced disease incidence and modestly inhibited severity in affected mice. This beneficial effect was associated with reduced serum concentrations of IL-6. AMD3100 did not affect anti-collagen type II antibodies and, in contrast with its action in IFN-γR KO mice, did not inhibit the delayed type hypersensitivity response against collagen type II, suggesting that the beneficial effect cannot be explained by inhibition of humoral or cellular autoimmune responses. AMD3100 inhibited the in vitro chemotactic effect of CXCL12 on splenocytes, as well as in vivo leukocyte infiltration in CXCL12-containing subcutaneous air pouches. We also demonstrate that, in addition to its effect on cell infiltration, CXCL12 potentiates receptor activator of NF-κB ligand-induced osteoclast differentiation from splenocytes and increases the calcium phosphate-resorbing capacity of these osteoclasts, both processes being potently counteracted by AMD3100. Our observations indicate that CXCL12 acts as a pro-inflammatory factor in the pathogenesis of autoimmune arthritis by attracting inflammatory cells to joints and by stimulating the differentiation and activation of osteoclasts.  相似文献   
180.
Mice with a deficiency in IFN-γ or IFN-γ receptor (IFN-γR) are more susceptible to collagen-induced arthritis (CIA), an experimental autoimmune disease that relies on the use of complete Freund's adjuvant (CFA). Here we report that the heightened susceptibility of IFN-γR knock-out (KO) mice is associated with a functional impairment of CD4+CD25+ Treg cells. Treatment of wild-type mice with depleting anti-CD25 antibody after CFA-assisted immunisation with collagen type II (CII) significantly accelerated the onset of arthritis and increased the severity of CIA. This is an indication of a role of Treg cells in the effector phase of CIA. IFN-γR deficiency did not affect the number of CD4+CD25+ T cells in the central and peripheral lymphoid tissues. In addition, CD4+CD25+ T cells isolated from naive IFN-γR KO mice had a normal potential to suppress T cell proliferation in vitro. However, after immunisation with CII in CFA, the suppressive activity of CD4+CD25+ T cells became significantly more impaired in IFN-γR-deficient mice. Moreover, expression of the mRNA for Foxp3, a highly specific marker for Treg cells, was lower. We further demonstrated that the effect of endogenous IFN-γ, which accounts for more suppressive activity in wild-type mice, concerns both Treg cells and accessory cells. Our results demonstrate that the decrease in Treg cell activity in CIA is counter-regulated by endogenous IFN-γ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号