排序方式: 共有83条查询结果,搜索用时 15 毫秒
61.
Haythem Mhadhbi Moez Jebara Férid Limam Thierry Huguet Mohamed Elarbi Aouani 《Physiologia plantarum》2005,124(1):4-11
The relationships between symbiotic performance and nodular antioxidant enzymes were studied for the associations between three Medicago truncatula lines and three Sinorhizobium meliloti strains. The results showed that the variability in symbiotic efficiency was dependent on the bacterial partner, host plant and their interaction. The contribution of each factor to the total amount of variance differed with the measured parameter. The aerial biomass production and nitrogen-fixing capacity were affected similarly by the three factors, whereas root and nodule biomass and catalase (CAT, E.C. 1.11.1.6), guaiacol peroxidase (POX, E.C. 1.11.1.7) and ascorbate peroxidase (APX, E.C. 1.11.1.11) antioxidant activities were mainly influenced by the M. truncatula line. The nodule number was dependent on the bacterial strain, and superoxide dismutase (SOD, E.C. 1.15.1.1) was dependent mainly on the plant–rhizobium interaction. A highly significant correlation was found between nitrogen-fixing activity, shoot biomass production, total nodule protein content and catalase activity. The other nodular antioxidant enzymes were differentially expressed between associations and showed no clear correlation with symbiotic efficiency. 相似文献
62.
Vitamins for enhancing plant resistance 总被引:1,自引:0,他引:1
Hatem Boubakri Mahmoud Gargouri Ahmed Mliki Faiçal Brini Julie Chong Moez Jbara 《Planta》2016,244(3):529-543
63.
Plant genome modification by homologous recombination 总被引:11,自引:0,他引:11
The mechanisms and frequencies of various types of homologous recombination (HR) have been studied in plants for several years. However, the application of techniques involving HR for precise genome modification is still not routine. The low frequency of HR remains the major obstacle but recent progress in gene targeting in Arabidopsis and rice, as well as accumulating knowledge on the regulation of recombination levels, is an encouraging sign of the further development of HR-based approaches for genome engineering in plants. 相似文献
64.
65.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition. 相似文献
66.
Brini F Hanin M Lumbreras V Amara I Khoudi H Hassairi A Pagès M Masmoudi K 《Plant cell reports》2007,26(11):2017-2026
Late Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid
(ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress. When compared to wild type plants, the Dhn-5 transgenic plants exhibited stronger growth under high concentrations of NaCl or under water deprivation, and showed a faster
recovery from mannitol treatment. Leaf area and seed germination rate decreased much more in wild type than in transgenic
plants subjected to salt stress. Moreover, the water potential was more negative in transgenic than in wild type plants. In
addition, the transgenic plants have higher proline contents and lower water loss rate under water stress. Also, Na+ and K+ accumulate to higher contents in the leaves of the transgenic plants. Our data strongly support the hypothesis that Dhn-5, by its protective role, contributes to an improved tolerance to salt and drought stress through osmotic adjustment. 相似文献
67.
Violette Vincent Nushin Aghajari Noémie Pollet Anaïs Boisson Samira Boudebbouze Richard Haser Emmanuelle Maguin Moez Rhimi 《Antonie van Leeuwenhoek》2013,103(4):701-712
The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe2+ and 1.6 mM Mg2+. Purified protein displayed a high catalytic efficiency of 102 s?1 mM?1 for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis β-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature. 相似文献
68.
Moez Hanin Fa??al Brini Chantal Ebel Yosuke Toda Shin Takeda Khaled Masmoudi 《Plant signaling & behavior》2011,6(10):1503-1509
Dehydrins (DHNs), or group 2 LEA (Late Embryogenesis Abundant) proteins, play a fundamental role in plant response and adaptation to abiotic stresses. They accumulate typically in maturing seeds or are induced in vegetative tissues following salinity, dehydration, cold and freezing stress. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y, S and K segments. The K segment representing a highly conserved 15 amino acid motif forming amphiphilic a-helix is especially important since it has been found in all dehydrins. Since more than 20 y, they are thought to play an important protective role during cellular dehydration but their precise function remains unclear. This review outlines the current status of the progress made toward the structural, physico-chemical and functional characterization of plant dehydrins and how these features could be exploited in improving stress tolerance in plants.Key words: abiotic stress, dehydration stress, drought, cold acclimation, freezing tolerance, LEA proteins, dehydrins 相似文献
69.
Moez Shiri Mokded Rabhi Abdelhak El Amrani Chedly Abdelly 《International journal of phytoremediation》2015,17(10):925-928
In a previous study, we showed that the halophyte plant model Thellungiella salsuginea was more tolerant to phenanthrene (Polycyclic Aromatic Hydrocarbon: PAH) than its relative glycophyte Arabidopsis thaliana. In the present work, we investigated the potential of another halophyte with higher biomass production, Cakile maritma, to reduce phenanthrene phytotoxicity. Sand was used instead of arable soil with the aim to avoid pollutant degradation by microorganisms or their interaction with the plant. After 6 weeks of treatment by 500 ppm phenanthrene (Phe), stressed plants showed a severe reduction (–73%) in their whole biomass, roots being more affected than leaves and stems. In parallel, Guaiacol peroxidase (GPX) activity was increased by 185 and 62% in leaves and roots, respectively. Non-enzymatic antioxidant capacity (assayed by ABTS test) was maintained unchanged in all plant organs. The model halophytic plant Thellungiella salsuginea was used as a biomarker of phenanthrene stress severity and was grown at 0 (control), 125, 250, and 375 ppm. T. salsuginea plants grown on the sand previously contaminated by 500 ppm Phe then treated by C. maritma culture (phytoremediation culture) showed similar biomass production as plants subjected to 125 ppm Phe. This suggests that the phytotoxic effects of phenanthrene were reduced by 75% by the 6-week treatment by C. maritima. Our findings indicate that C. maritima can constitute a potentially good candidate for PAH phytoremediation. 相似文献
70.
Nasal colonization with community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) is being increasingly reported, especially in places where people are in close contact and in reduced hygiene, such as day-care centers. In this study we investigated the frequency of MRSA colonization and their antibiotic susceptibility patterns in 1-6 years old children of day-care centers in Hamadan, West of Iran.Five hundred nasal swabs were collected from children of 27 day-care centers that had no risk factors for colonization by S. aureus. The specimens were cultured for isolation of S. aureus by standard methods. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. For evaluation of the frequency of erythromycin induced clindamycin resistance, disk approximation test (D-test) was applied.Totally, 148 (29.6%) children were colonized by S. aureus. Out of 260 male, 94 (36.2%) and of 240 female, 54 (22.5%) cases were nasal carriers of S. aureus (P value = 0.001). Six (4.1%) of the 148 S. aureus isolated from children were MRSA strains. None of MRSA and methicillin susceptible S. aureus (MSSA) was resistant to vancomycin and clindamycin. Three of the 6 strains of MRSA and 7 (4.9%) of the 142 MSSA strains were resistant to erythromycin, and D-test was positive in all of them.We conclude that the rate of colonization by S. aureus is high in children attending day-care centers but colonization with MRSA is not common in our areas. Clindamycin or trimethoprim-sulfamethoxazol could be used in mild to moderataly severe diseases caused by CA-MRSA. However, if the CA-MRSA isolates are erythromycin resistant, D-test should be carried out for detection of inducible clindamycin resistance. 相似文献