首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3028篇
  免费   182篇
  3210篇
  2023年   15篇
  2022年   40篇
  2021年   57篇
  2020年   35篇
  2019年   75篇
  2018年   69篇
  2017年   53篇
  2016年   91篇
  2015年   166篇
  2014年   140篇
  2013年   212篇
  2012年   247篇
  2011年   213篇
  2010年   136篇
  2009年   102篇
  2008年   179篇
  2007年   184篇
  2006年   172篇
  2005年   164篇
  2004年   159篇
  2003年   137篇
  2002年   153篇
  2001年   23篇
  2000年   17篇
  1999年   30篇
  1998年   21篇
  1997年   19篇
  1996年   23篇
  1995年   19篇
  1994年   16篇
  1993年   14篇
  1992年   15篇
  1991年   20篇
  1990年   10篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1986年   9篇
  1985年   7篇
  1984年   14篇
  1983年   11篇
  1982年   21篇
  1981年   9篇
  1980年   7篇
  1979年   11篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1971年   4篇
  1967年   8篇
排序方式: 共有3210条查询结果,搜索用时 15 毫秒
91.
Ferritin from the spleen of the Antarctic teleost Trematomus bernacchii is composed of a single subunit that contains both the ferroxidase center residues, typical of mammalian H chains, and the carboxylate residues forming the micelle nucleation site, typical of mammalian L chains. Comparison of the amino-acid sequence with those available from lower vertebrates indicates that T. bernacchii ferritin can be classified as an M-type homopolymer. Interestingly, the T. bernacchii ferritin chain shows 85.7% identity with a cold-inducible ferritin chain of the rainbow trout Salmo gairdneri. The structural and functional properties indicate that cold acclimation and functional adaptation to low temperatures are achieved without significant modification of the protein stability. In fact, the stability of T. bernacchii ferritin to denaturation induced by acid or temperature closely resembles that of mesophilic mammalian ferritins. Moreover iron is taken up efficiently and the activation energy of the reaction is 74.9 kJ.mol(-1), a value slightly lower than that measured for the human recombinant H ferritin (80.8 kJ.mol(-1)).  相似文献   
92.
Split hand/split foot (SHFD) is a human developmental defect characterized by missing digits, fusion of remaining digits, and a deep median cleft in the hands and feet. Cytogenetic studies of deletions and translocations associated with this disorder have indicated that an autosomal dominant split hand/split foot locus (gene SHFD1) maps to 7q21-q22. To characterize the SHFD1 locus, somatic cell hybrid lines were constructed from cytogenetically abnormal individuals with SHFD. Molecular analysis resulted in the localization of 93 DNA markers to one of 10 intervals surrounding the SHFD1 locus. The translocation breakpoints in four SHFD patients were encompassed by the smallest region of overlap among the SHFD-associated deletions. The order of DNA markers in the SHFD1 critical region has been defined as PON–D7S812–SHFD1–D7S811–ASNS. One DNA marker, D7S811, detected altered restriction enzyme fragments in three patients with translocations when examined by pulsed-field gel electro-phoresis (PFGE). These data map SHFD1, a gene that is crucial for human limb differentiation, to a small interval in the q21.3-q22.1 region of human chromosome 7.  相似文献   
93.
Background. Helicobacter pylori is the main cause of gastritis and a primary carcinogen. The aim of this study was to assess oxidative damage in mucosal compartments of gastric mucosa in H. pylori positive and negative atrophic and nonatrophic gastritis. Materials and methods. Five groups of 10 patients each were identified according to H. pylori positive or negative chronic atrophic (Hp‐CAG and CAG, respectively) and nonatrophic gastritis (Hp‐CG and CG, respectively), and H. pylori negative normal mucosa (controls). Oxidative damage was evaluated by nitrotyrosine immunohistochemistry in the whole mucosa and in each compartment at baseline and at 2 and 12 months after eradication. Types of intestinal metaplasia were classified by histochemistry. Results. Total nitrotyrosine levels appeared significantly higher in H. pylori positive than in negative patients, and in Hp‐CAG than in Hp‐CG (p < .001); no differences were found between H. pylori negative gastritis and normal mucosa. Nitrotyrosine were found in foveolae and intestinal metaplasia only in Hp‐CAG. At 12 months after H. pylori eradication, total nitrotyrosine levels showed a trend toward a decrease in Hp‐CG and decreased significantly in Hp‐CAG (p = .002), disappearing from the foveolae (p = .002), but remaining unchanged in intestinal metaplasia. Type I and II of intestinal metaplasia were present with the same prevalence in Hp‐CAG and CAG, and did not change after H. pylori eradication. Conclusions. Oxidative damage of the gastric mucosa increases from Hp‐CG to Hp‐CAG, involving the foveolae and intestinal metaplasia. H. pylori eradication induces a complete healing of foveolae but not of intestinal metaplasia, reducing the overall oxidative damage in the mucosa.  相似文献   
94.
Disruption of the apoptotic pathways may account for resistance to chemotherapy and treatment failures in human neoplastic disease. To further evaluate this issue, we isolated a HL-60 cell clone highly resistant to several drugs inducing apoptosis and to the differentiating chemical all-trans-retinoic acid (ATRA). The resistant clone displayed an activated phosphoinositide 3-kinase (PI3K)/AKT1 pathway, with levels of phosphatidylinositol (3,4,5) trisphosphate higher than the parental cells and increased levels of both Thr 308 and Ser 473 phosphorylated AKT1. In vitro AKT1 activity was elevated in resistant cells, whereas treatment of the resistant cell clone with two inhibitors of PI3K, wortmannin or Ly294002, strongly reduced phosphatidylinositol (3,4,5) trisphosphate levels and AKT1 activity. The inhibitors reversed resistance to drugs. Resistant cells overexpressing either dominant negative PI3K or dominant negative AKT1 became sensitive to drugs and ATRA. Conversely, if parental HL-60 cells were forced to overexpress an activated AKT1, they became resistant to apoptotic inducers and ATRA. There was a tight relationship between the activation of the PI3K/AKT1 axis and the expression of c-IAP1 and c-IAP2 proteins. Activation of the PI3K/AKT1 axis in resistant cells was dependent on enhanced tyrosine phosphorylation of the p85 regulatory subunit of PI3K, conceivably due to an autocrine insulin-like growth factor-I production. Our findings suggest that an up-regulation of the PI3K/AKT1 pathway might be one of the survival mechanisms responsible for the onset of resistance to chemotherapeutic and differentiating therapy in patients with acute leukemia.  相似文献   
95.
Sequences from gapA, gyrA and ompA were used to evaluate the relationships of the enterobacterial plant pathogens, and assess whether a robust phylogeny can be ascertained using this group of housekeeping genes. Up to 48 taxa were included in a combined phylogenetic analysis to explore the evolutionary distribution of plant pathogenic species across the family Enterobacteriaceae. Phylogenies were reconstructed from gapA, gyrA and ompA gene sequences using maximum parsimony and maximum likelihood algorithms, and phylogenetic congruence was evaluated by the incongruence length difference test and the partition addition bootstrap alteration approach. The resulting gene trees were found to be incongruent, with gapA supporting a monophyletic origin for the plant pathogenic species. In contrast, gyrA and ompA supported multiple polyphyletic origins of Erwinia, Brenneria, Pectobacterium and Pantoea in conjunction with a previously published 16S rDNA phylogeny. However, none of the trees (not even the published 16S rDNA gene tree) supports the current taxonomic classification of these genera into four clades, with Pantoea forming the only monophyletic group in the gapA, gyrA and 16S rDNA trees. Finally, the gapA, gyrA and previously published 16S rDNA phylogenies differ in the taxonomic placement of several bacterial strains which are separated in the three trees. The observed incongruence among the four gene histories is likely to be the result of horizontal transfer events, confounding the search for a robust set of housekeeping genes with a shared evolutionary history that could be used to confidently characterize the relationships of the plant pathogenic enterobacteria. © The Willi Hennig Society 2010.  相似文献   
96.
Xenotransplantation of genetically engineered porcine chondrocytes may provide a therapeutic solution for the repair of cartilage defects of various types. However, the mechanisms underlying the humoral and cellular responses that lead to rejection of xenogeneic cartilage are not well understood. In this study, we investigated the interaction between human NK cells and isolated porcine costal chondrocytes (PCC). Our data show that freshly isolated NK cells adhere weakly to PCC. Consequently, PCC were highly resistant to cytolysis mediated by freshly isolated NK cells. However, the presence of human natural Abs in the coculture was often sufficient to trigger cytotoxicity against PCC. Furthermore, IL-2 stimulation of NK cells or activation of PCC with the proinflammatory cytokines TNF-α or IL-1α resulted in increased adhesion, which was paralleled by increased NK cell-mediated lysis of PCC. NK cell adhesion to PCC could be blocked by Abs against human LFA-1 and porcine VCAM-1. NKG2D and NKp44 were involved in triggering cytotoxicity against PCC, which expressed ligands for these activating NK cell receptors. Our data further suggest that NKp30 and NKp46 may contribute to the activation of NK cells by PCC under certain conditions. Finally, comparative studies confirmed that PCC are more resistant than porcine aortic endothelial cells to human NK cell-mediated lysis. Thus, the data demonstrate that human NK cells can kill pig chondrocytes and may therefore contribute to rejection of xenogeneic cartilage. In addition, we identify potential targets for intervention to prevent the NK cell response against pig xenografts.  相似文献   
97.
Imatinib is the first molecular targeted therapy that has shown clinical success, but imatinib acquired resistance, although a rare event, is critical during the therapy of chronic myelogenous leukaemia (CML). With the aim of better understanding the molecular mechanisms accompanying acquisition of resistance to this drug, a comparative proteomic approach was undertaken on CML cell lines LAMA 84 S (imatinib sensitive) and LAMA 84 R (imatinib resistant). Forty-four differentially expressed proteins were identified and categorized into five main functional classes: (I) heat shock proteins and chaperones; (II) nucleic acid interacting proteins (binding/synthesis/stability); (III) structural proteins, (IV) cell signaling, and (V) metabolic enzymes. Several heat shock proteins known to complex Bcr-Abl were overexpressed in imatinib resistant cells, showing a possible involvement of these proteins in the mechanism of resistance. HnRNPs also resulted in being up-regulated in imatinib resistant cells. These proteins have been shown to be strongly and directly related to Bcr-Abl activity. To our knowledge, this is the first direct proteomic comparison of imatinib sensitive/resistant CML cell lines.  相似文献   
98.
99.
Starting from the Developmental Origins of Health and Disease (DOHaD) hypotheses proposed by David Barker, namely fetal programming, in the past years, there is a growing evidence of the major role played by epigenetic factors during the intrauterine life and the perinatal period. Furthermore, it has been assessed that these factors can affect the health status in infancy and even in adulthood. In this review, we focus our attention on the fetal programming of the brain, analyzing the most recent literature concerning the epigenetic factors that can influence the development of neuropsychiatric disorders such as bipolar disorders, major depressive disorders, and schizophrenia. The perinatal epigenetic factors have been divided in two main groups: maternal factors and fetal factors. The maternal factors include diet, smoking, alcoholism, hypertension, malnutrition, trace elements, stress, diabetes, substance abuse, and exposure to environmental toxicants, while the fetal factors include hypoxia/asphyxia, placental insufficiency, prematurity, low birth weight, drugs administered to the mother or to the baby, and all factors causing intrauterine growth restriction. A better comprehension of the possible mechanisms underlying the pathogenesis of these diseases may help researchers and clinicians develop new diagnostic tools and treatments to offer these patients a tailored medical treatment strategy to improve their quality of life. Birth Defects Research (Part C) 108:207–223, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号