首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4351篇
  免费   361篇
  国内免费   5篇
  2023年   18篇
  2022年   24篇
  2021年   67篇
  2020年   42篇
  2019年   48篇
  2018年   60篇
  2017年   50篇
  2016年   111篇
  2015年   180篇
  2014年   195篇
  2013年   226篇
  2012年   324篇
  2011年   304篇
  2010年   182篇
  2009年   181篇
  2008年   260篇
  2007年   273篇
  2006年   227篇
  2005年   248篇
  2004年   226篇
  2003年   224篇
  2002年   214篇
  2001年   56篇
  2000年   61篇
  1999年   68篇
  1998年   58篇
  1997年   38篇
  1996年   32篇
  1995年   51篇
  1994年   51篇
  1993年   39篇
  1992年   41篇
  1991年   40篇
  1990年   34篇
  1989年   43篇
  1988年   20篇
  1987年   18篇
  1986年   21篇
  1985年   36篇
  1984年   22篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1979年   17篇
  1978年   16篇
  1977年   10篇
  1973年   13篇
  1971年   14篇
  1967年   8篇
  1965年   9篇
排序方式: 共有4717条查询结果,搜索用时 62 毫秒
141.
The degradation of diatoms is mainly catalyzed by Bacteroidetes and this process is of global relevance for the carbon cycle. In this study, a combination of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and fluorescent lectin binding analysis (FLBA) was used to identify and map glycoconjugates involved in the specific interactions of Bacteroidetes and diatoms, as well as detritus, at the coastal marine site Helgoland Roads (German Bight, North Sea). The study probed both the presence of lectin-specific extracellular polymeric substances (EPS) of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and Ulvibacter were shown to form microcolonies within aggregates for which FLBA indicated the presence of galactose containing slime. Polaribacter spp. was shown to bind specifically to the setae of the abundant diatom Chaetoceros spp., and the setae were stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of the genus Asterionella which bound, among others, the mannose-specific lectin PSA. The newly developed CARD-FISH/FLBA protocol was limited to the glycoconjugates that persisted after the initial CARD-FISH procedure. The differential attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA provided evidence for the essential role that formation and recognition of glycoconjugates play in the interaction of bacteria with phytoplankton.  相似文献   
142.
Eric Allan  Wolfgang W. Weisser  Markus Fischer  Ernst-Detlef Schulze  Alexandra Weigelt  Christiane Roscher  Jussi Baade  Romain L. Barnard  Holger Beßler  Nina Buchmann  Anne Ebeling  Nico Eisenhauer  Christof Engels  Alexander J. F. Fergus  Gerd Gleixner  Marlén Gubsch  Stefan Halle  Alexandra M. Klein  Ilona Kertscher  Annely Kuu  Markus Lange  Xavier Le Roux  Sebastian T. Meyer  Varvara D. Migunova  Alexandru Milcu  Pascal A. Niklaus  Yvonne Oelmann  Esther Pašalić  Jana S. Petermann  Franck Poly  Tanja Rottstock  Alexander C. W. Sabais  Christoph Scherber  Michael Scherer-Lorenzen  Stefan Scheu  Sibylle Steinbeiss  Guido Schwichtenberg  Vicky Temperton  Teja Tscharntke  Winfried Voigt  Wolfgang Wilcke  Christian Wirth  Bernhard Schmid 《Oecologia》2013,173(1):223-237
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.  相似文献   
143.
Identifying and explaining bottlenecks in organic carbon mineralization and the persistence of organic matter in marine sediments remain challenging. This study aims to illuminate the process of carbon flow between microorganisms involved in the sedimentary microbial food chain in anoxic, organic-rich sediments of the central Namibian upwelling system, using biogeochemical rate measurements and abundances of Bacteroidetes, Gammaproteobacteria, and sulfate-reducing bacteria at two sampling stations. Sulfate reduction rates decreased by three orders of magnitude in the top 20 cm at one sampling station (280 nmol cm?3 d?1 – 0.1 nmol cm?3 d?1) and by a factor of 7 at the second station (65 nmol cm?3 d?1 – 9.6 nmol cm?3 d?1). However, rates of enzymatic hydrolysis decreased by less than a factor of three at both sampling stations for the polysaccharides laminarin (23 nmol cm?3 d?1– 8 nmol cm?3 d?1 and 22 nmol cm?3 d?1– 10 nmol cm?3 d?1) and pullulan (11 nmol cm?3 d?1– 4 nmol cm?3 d?1 and 8 nmol cm?3 d?1– 6 nmol cm?3 d?1). Increasing imbalance between carbon turnover by hydrolysis and terminal oxidation with depth, the steep decrease in cell specific activity of sulfate reducing bacteria with depth, low concentrations of volatile fatty acids (less than 15 μM), and persistence of dissolved organic carbon, suggest decreasing bioavailability and substrate limitation with depth.  相似文献   
144.
In previous studies, three different strains (BrG1, BrG2, and BrG3) of ferrous iron-oxidizing, nitrate-reducing bacteria were obtained from freshwater sediments. All three strains were facultative anaerobes and utilized a variety of organic substrates and molecular hydrogen with nitrate as electron acceptor. In this study, analyses of 16S rDNA sequences showed that strain BrG1 was affiliated with the genus Acidovorax, strain BrG2 with the genus Aquabacterium, and strain BrG3 with the genus Thermomonas. Previously, bacteria similar to these three strains were detected with molecular techniques in MPN dilution series for ferrous iron-oxidizing, nitrate-reducing bacteria inoculated with different freshwater sediment samples. In the present study, further molecular analyses of these MPN cultures indicated that the ability to oxidize ferrous iron with nitrate is widespread amongst the Proteobacteria and may also be found among the Gram-positive bacteria with high GC content of DNA. Nitrate-reducing bacteria oxidized ferrous iron to poorly crystallized ferrihydrite that was suitable as an electron acceptor for ferric iron-reducing bacteria. Biologically produced ferrihydrite and synthetically produced ferrihydrite were both well suited as electron acceptors in MPN dilution cultures. Repeated anaerobic cycling of iron was shown in a coculture of ferrous iron-oxidizing bacteria and the ferric iron-reducing bacterium Geobacter bremensis. The results indicate that iron can be cycled between its oxidation states +II and +III by microbial activities in anoxic sediments.  相似文献   
145.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   
146.
147.
Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.  相似文献   
148.
Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.  相似文献   
149.
In oxygenic phototrophic organisms, the phytyl ‘tail’ of chlorophyll a is formed from a geranylgeranyl residue by the enzyme geranylgeranyl reductase. Additionally, in oxygenic phototrophs, phytyl residues are the tail moieties of tocopherols and phylloquinone. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking geranylgeranyl reductase, ΔchlP, was compared to strains with specific deficiencies in either tocopherols or phylloquinone to assess the role of chlorophyll a phytylatation (versus geranylgeranylation). The tocopherol‐less Δhpt strain grows indistinguishably from the wild‐type under ‘standard’ light photoautotrophic conditions, and exhibited only a slightly enhanced rate of photosystem I degradation under strong irradiation. The phylloquinone‐less ΔmenA mutant also grows photoautotrophically, albeit rather slowly and only at low light intensities. Under strong irradiation, ΔmenA retained its chlorophyll content, indicative of stable photosystems. ΔchlP may only be cultured photomixotrophically (due to the instability of both photosystems I and II). The increased accumulation of myxoxanthophyll in ΔchlP cells indicates photo‐oxidative stress even under moderate illumination. Under high‐light conditions, ΔchlP exhibited rapid degradation of photosystems I and II. In conclusion, the results demonstrate that chlorophyll a phytylation is important for the (photo)stability of photosystems I and II, which, in turn, is necessary for photoautotrophic growth and tolerance of high light in an oxygenic environment.  相似文献   
150.
Echinocytes formed from discocytic erythrocytes by electric field pulses at 0 degrees C return to the discoytic shape upon incubation at 37 degrees C and subsequently turn into stomatocytes. Active and passive components of phospholipid translocation are involved in this shape recovery. Following low-field-strength pulses (5 kV cm-1), shape recovery is fully suppressed by ATPase inhibitors, such as vanadate. When vanadate is only added after stomatocyte formation has been completed, the cells return to the stage of echinocytosis prevailing before recovery. At higher field strength (7 kV cm-1) and in particular after repetitive field pulses, the subsequent incubation at 37 degrees C results in partial shape recovery even in the presence of vanadate. On the basis of the enhanced passive transmembrane mobilities of phospholipid probes observed previously following electroporation, the shape changes in the presence of vanadate are proposed to be due to a passive net movement of phospholipids from the outer to the inner membrane leaflet, as a consequence of the different mobilities of the various membrane phospholipids. Repetitive pulses at higher field strengths lead to a progressively more discocytic stationary shape during subsequent resealing. This phenomenon is explained by the progressively increased transbilayer mobility of the normally almost immobile phospholipid sphingomyelin and a consecutive progressive symmetrization of all membrane phospholipds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号