首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6177篇
  免费   502篇
  国内免费   3篇
  6682篇
  2023年   16篇
  2022年   38篇
  2021年   70篇
  2020年   46篇
  2019年   58篇
  2018年   89篇
  2017年   67篇
  2016年   133篇
  2015年   265篇
  2014年   232篇
  2013年   306篇
  2012年   389篇
  2011年   399篇
  2010年   290篇
  2009年   233篇
  2008年   331篇
  2007年   380篇
  2006年   351篇
  2005年   323篇
  2004年   304篇
  2003年   309篇
  2002年   262篇
  2001年   104篇
  2000年   85篇
  1999年   116篇
  1998年   91篇
  1997年   63篇
  1996年   85篇
  1995年   76篇
  1994年   65篇
  1993年   79篇
  1992年   74篇
  1991年   57篇
  1990年   54篇
  1989年   56篇
  1988年   43篇
  1987年   57篇
  1986年   37篇
  1985年   36篇
  1984年   33篇
  1983年   39篇
  1982年   23篇
  1981年   34篇
  1980年   29篇
  1979年   21篇
  1978年   22篇
  1975年   17篇
  1974年   18篇
  1973年   16篇
  1970年   14篇
排序方式: 共有6682条查询结果,搜索用时 9 毫秒
71.
Novel, thick-film biosensors have been developed for the determination of l-glutamate in foodstuffs. The sensors were prepared by immobilization of l-glutamate oxidase by using polycarbamylsulfonate-hydrogel on a thick-film sensor. l-Glutamate oxidases obtained from Streptomyces sp. with different degree of purification were compared with their characteristic response to l-glutamate at different conditions and for their specificity, inhibition, and storage properties. These sensors were applied to determine monosodium glutamate in soy sauce samples and show good correlation with colorimetric method.  相似文献   
72.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53   总被引:33,自引:0,他引:33  
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.  相似文献   
73.
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.  相似文献   
74.
In this study, Nocardia iowensis was used to transform oleanolic acid (OA) into oleanane derivatives. The first derivative, which was found after 24 h of cultivation, was the known and already described OA methyl ester. After 1 week, two other derivatives (oleanonic acid methyl ester and an unknown metabolite) were identified as new products of a biotransformation by N. iowensis. These oleanane metabolites were characterized by HPLC, HPLC‐ESI‐MS, and HPLC‐1H NMR spectroscopy. The biotransformation was performed by suspended and immobilized cells (ICs) of N. iowensis. Cells immobilized in alginate beads were used in order to prepare a continuous process. The substrate uptake of free and ICs was similar, whereas the peak area of OA methyl ester of the ICs was only about 10% of the native cells. However, the final product (oleanonic acid methyl ester) concentrations were similar in both approaches, whereas the unknown metabolite 3 was only detected transiently in the medium of ICs. Based on these results, a new biosynthetic pathway for the biotechnological production of oleanonic acid methyl ester is proposed.  相似文献   
75.
76.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   
77.

Introduction

The increased thrombotic risk of oral contraceptives (OC) has been attributed to various alterations of the hemostatic system, including acquired resistance to activated protein C (APC). To evaluate to what extent OC-associated APC resistance induces a prothrombotic state we monitored plasma levels of thrombin and molecular markers specific for thrombin formation in women starting OC use. Elevated plasma levels of thrombin have been reported to characterize situations of high thrombotic risk such as trauma-induced hypercoagulability, but have not yet been studied during OC use.

Patients and Methods

Blood samples were collected prospectively from healthy women (n = 21) before and during three menstruation cycles after start of OC. APC resistance was evaluated using a thrombin generation-based assay. Plasma levels of thrombin and APC were directly measured using highly sensitive oligonucleotide-based enzyme capture assay (OECA) technology. Thrombin generation markers and other hemostasis parameters were measured additionally.

Results

All women developed APC resistance as indicated by an increased APC sensitivity ratio compared with baseline after start of OC (p = 0.0003). Simultaneously, plasma levels of thrombin, prothrombin fragment 1+2, and of thrombin-antithrombin complexes did not change, ruling out increased thrombin formation. APC plasma levels were also not influenced by OC use, giving further evidence that increased thrombin formation did not occur.

Conclusions

In the majority of OC users no enhanced thrombin formation occurs despite the development of APC resistance. It cannot be ruled out, however, that thrombin formation might occur to a greater extent in the presence of additional risk factors. If this were the case, endogenous thrombin levels might be a potential biomarker candidate to identify women at high thrombotic risk during OC treatment. Large-scale studies are required to assess the value of plasma levels of thrombin as predictors of OC-associated thrombotic risk.  相似文献   
78.
In this study, we report three novel naturally occurring compounds, blapsins A (1) and B (2), and blapsamide (3) from the ethanol extract of the stink beetle, Blaps japanensis. The structures of these compounds were determined using spectroscopic methods. Compound 3 is a phenolic compound bearing a formamido group in the structure. Functional studies revealed that compounds 1 and 2 potently inhibited 14-3-3 protein-protein interactions (PPIs) with IC(50) values of 9.2 and 10.0 μM as determined by an ELISA assay, and 2.0 and 2.5 μM in an FP assay, respectively. These compounds represent the first example of natural small-molecule 14-3-3 inhibitors.  相似文献   
79.
80.
Among the protein translocation pathways of the thylakoid membrane in chloroplasts, the DeltapH/TAT pathway is unique in several aspects. In vitro transport assays with isolated chloroplasts or thylakoids have defined the trans-thylakoidal proton gradient as the sole requirement for effecting transport. From these studies, evidence has also accumulated indicating that, in contrast to the remaining protein transport pathways present in the thylakoid membrane, the DeltapH/TAT pathway is able to mediate the transport of folded proteins. The present work has established a novel approach to demonstrate the transport of folded proteins by this pathway in vivo. For this purpose, Arabidopsis thaliana plants were stably transformed with gene constructs expressing enhanced green fluorescent protein (EGFP) alone or fused to the transit peptides of different chloroplast proteins under the control of the 35S CAMV promoter. The intracellular and intraorganellar distribution of EGFP in the resulting transformants showed that while all the chloroplast transit peptides efficiently mediated the transport of EGFP into plastids, only those specific for the DeltapH/TAT pathway were able to direct the protein into the thylakoid lumen as well. This could be demonstrated both by fluorescence and immunoelectron microscopy. Analysis of isolated and fractionated chloroplasts using western blot and spectrofluorometric assays confirmed the presence of folded EGFP solely within the thylakoid lumen of these lines. These results strongly suggest that the protein adopts a folded state in the chloroplast stroma and thus, can only be translocated further into the chloroplast lumen by the DeltapH/TAT pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号