首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4098篇
  免费   286篇
  国内免费   2篇
  4386篇
  2023年   13篇
  2022年   21篇
  2021年   40篇
  2020年   31篇
  2019年   44篇
  2018年   64篇
  2017年   54篇
  2016年   89篇
  2015年   196篇
  2014年   166篇
  2013年   226篇
  2012年   291篇
  2011年   283篇
  2010年   214篇
  2009年   163篇
  2008年   231篇
  2007年   272篇
  2006年   259篇
  2005年   241篇
  2004年   221篇
  2003年   233篇
  2002年   211篇
  2001年   41篇
  2000年   35篇
  1999年   58篇
  1998年   64篇
  1997年   49篇
  1996年   53篇
  1995年   46篇
  1994年   36篇
  1993年   50篇
  1992年   38篇
  1991年   26篇
  1990年   17篇
  1989年   31篇
  1988年   13篇
  1987年   27篇
  1986年   19篇
  1985年   13篇
  1984年   22篇
  1983年   26篇
  1982年   15篇
  1981年   23篇
  1980年   15篇
  1979年   10篇
  1978年   11篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
  1973年   7篇
排序方式: 共有4386条查询结果,搜索用时 0 毫秒
101.
Regulation of gap junction coupling in the developing neocortex   总被引:4,自引:0,他引:4  
In the developing mammalian, neocortex gap junctions represent a transient, metabolic, and electrical communication system. These gap junctions may play a crucial role during the formation and refinement of neocortical synaptic circuitries. This article focuses on two major points. First, the influence of gap junctions on electrotonic cell properties will be considered. Both the time-course and the amplitude of synaptic potentials depend,inter alia, on the integration capabilities of the postsynaptic neurons. These capabilities are, to a considerable extent, determined by the electrotonic characteristics of the postsynaptic cell. As a consequence, the efficacy of chemical synaptic inputs may be crucially affected by the presence of gap junctions. The second major topic is the regulation of gap junctional communication by neurotransmitters via second messenger pathways. The monoaminergic neuromodulators dopamine, nordrenaline, and serotonin reduce gap junction coupling via activation of two different intracellular signaling cascades—the cAMP/protein kinase A pathway and the IP3/Ca2+/protein kinase C pathway, 013 respectively. In addition, gap junctional communication seems to be modulated by the nitric oxide (NO)/cGMP system. Since NO production can be stimulated by glutamate-induced calcium influx, the NO/cGMP-dependent modulation of gap junctions might represent a functional link between developing glutamatergic synaptic transmission and the gap junctional network. Thus, it might be of particular importance in view of a role of gap junctions during the process of circuit formation.  相似文献   
102.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
103.
We present a rectangle-based segmentation algorithm that sets up a graph and performs a graph cut to separate an object from the background. However, graph-based algorithms distribute the graph's nodes uniformly and equidistantly on the image. Then, a smoothness term is added to force the cut to prefer a particular shape. This strategy does not allow the cut to prefer a certain structure, especially when areas of the object are indistinguishable from the background. We solve this problem by referring to a rectangle shape of the object when sampling the graph nodes, i.e., the nodes are distributed non-uniformly and non-equidistantly on the image. This strategy can be useful, when areas of the object are indistinguishable from the background. For evaluation, we focus on vertebrae images from Magnetic Resonance Imaging (MRI) datasets to support the time consuming manual slice-by-slice segmentation performed by physicians. The ground truth of the vertebrae boundaries were manually extracted by two clinical experts (neurological surgeons) with several years of experience in spine surgery and afterwards compared with the automatic segmentation results of the proposed scheme yielding an average Dice Similarity Coefficient (DSC) of 90.97±2.2%.  相似文献   
104.

Background

Human mesenchymal stem cells (hMSCs) are multipotent by nature and are originally isolated from bone marrow. In light of a future application of hMSCs in the oral cavity, a body compartment with varying oxygen partial pressures and an omnipresence of different bacterial species i.e. periodontitis pathogens, we performed this study to gain information about the behavior of hMSC in an anaerobic system and the response in interaction with oral bacterial pathogens.

Methodology/Principal Findings

We established a model system with oral pathogenic bacterial species and eukaryotic cells cultured in anaerobic conditions. The facultative anaerobe bacteria Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were studied. Their effects on hMSCs and primary as well as permanent gingival epithelial cells (Ca9-22, HGPEC) were comparatively analyzed. We show that hMSCs cope with anoxic conditions, since 40% vital cells remain after 72 h of anaerobic culture. The Ca9-22 and HGPEC cells are significantly more sensitive to lack of oxygen. All bacterial species reveal a comparatively low adherence to and internalization into hMSCs (0.2% and 0.01% of the initial inoculum, respectively). In comparison, the Ca9-22 and HGPEC cells present better targets for bacterial adherence and internalization. The production of the pro-inflammatory chemokine IL-8 is higher in both gingival epithelial cell lines compared to hMSCs and Fusobacterium nucleatum induce a time-dependent cytokine secretion in both cell lines. Porphyromonas gingivalis is less effective in stimulating secretion of IL-8 in the co-cultivation experiments.

Conclusions/significance

HMSCs are suitable for use in anoxic regions of the oral cavity. The interaction with local pathogenic bacteria does not result in massive pro-inflammatory cytokine responses. The test system established in this study allowed further investigation of parameters prior to set up of oral hMSC in vivo studies.  相似文献   
105.
Imperfect detection can bias estimates of site occupancy in ecological surveys but can be corrected by estimating detection probability. Time‐to‐first‐detection (TTD) occupancy models have been proposed as a cost–effective survey method that allows detection probability to be estimated from single site visits. Nevertheless, few studies have validated the performance of occupancy‐detection models by creating a situation where occupancy is known, and model outputs can be compared with the truth. We tested the performance of TTD occupancy models in the face of detection heterogeneity using an experiment based on standard survey methods to monitor koala Phascolarctos cinereus populations in Australia. Known numbers of koala faecal pellets were placed under trees, and observers, uninformed as to which trees had pellets under them, carried out a TTD survey. We fitted five TTD occupancy models to the survey data, each making different assumptions about detectability, to evaluate how well each estimated the true occupancy status. Relative to the truth, all five models produced strongly biased estimates, overestimating detection probability and underestimating the number of occupied trees. Despite this, goodness‐of‐fit tests indicated that some models fitted the data well, with no evidence of model misfit. Hence, TTD occupancy models that appear to perform well with respect to the available data may be performing poorly. The reason for poor model performance was unaccounted for heterogeneity in detection probability, which is known to bias occupancy‐detection models. This poses a problem because unaccounted for heterogeneity could not be detected using goodness‐of‐fit tests and was only revealed because we knew the experimentally determined outcome. A challenge for occupancy‐detection models is to find ways to identify and mitigate the impacts of unobserved heterogeneity, which could unknowingly bias many models.  相似文献   
106.
107.
Summary The retinal projections to the brain were studied in three species of European Salamandridae using anterograde transport of horseradish peroxidase and autoradiography. The results obtained were basically identical for all species and confirmed earlier findings on the fiber supply to the preoptic nucleus and the basal optic neuropil. In the anterior thalamus projections to three distinct terminal fields are clearly visible: (i) the diffusely stained corpus geniculatum thalamicum, (ii) the neuropil of Bellonci, pars lateralis, and (iii) a dorsomedial terminal field, the neuropil of Bellonci, pars medialis. Caudal to these terminal fields is an almost terminal-free region, the lateral neuropil. In the posterior thalamus a medial terminal field, the uncinate field, and a laterally located terminal field, the posterior thalamic neuropil, are distinguishable. The tectum opticum displays as many as four dense layers of retinofugal fibers and terminals in the rostral part and, in addition, a more densely stained strip of neuropil running from rostral to caudal over the tectum. The extent of ipsilateral fibers is greater than previously reported in other urodele species. They supply the medial and the lateral parts of the neuropil of Bellonci, the uncinate field, and reach the tectum opticum via the medial optic tract. Further, they form terminals in the innermost optic fiber layer throughout the rostral half of the ipsilateral tectum. A small proportion of ipsilateral fibers contributes very sparsely to all other thalamic terminal fields, leaving only the caudal part of the tectum and several layers of the rostral tectum completely free of a direct retinofugal fiber supply.  相似文献   
108.
Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar 'Chinese Spring' and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes.  相似文献   
109.

Background and aims

Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes.

Methods

We quantified 15N recovery rates in plant and soil N pools by adding 15N-labelled leaf and/or root litter under controlled conditions.

Results

Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced 15N recovery from litter in seedlings thereby affecting root N nutrition. 15N accumulated in seedlings in different sinks depending on litter type.

Conclusions

Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.  相似文献   
110.
Switchgrass is considered one of the most promising energy crops. However, breeding of elite switchgrass cultivars is required to meet the challenges of large scale and sustainable biomass production. As a native perennial adapted to North America, switchgrass has lowland and upland ecotypes, where most lowland ecotypes are tetraploid (2n?=?4x?=?36), and most upland ecotypes are predominantly octoploid (2n?=?8x?=?72). Hybridization between lowland and upland switchgrass plants could identify new cultivars with heterosis. However, crossing between tetraploid and octoploid switchgrass is rare in nature. Therefore, in order to break down the cross incompatibility barrier between tetraploid lowland and octoploid upland switchgrass lines, we developed autoployploid switchgrass lines from an anueploid lowland cv. Alamo. In this study, colchicine was used in liquid and solid mediums to chemically induce chromosome doubling in embryogenic calli derived from cv. Alamo. Thirteen autopolyploid switchgrass lines were regenerated from seedlings and identified using flow cytometry. The autoplyploid switchgrass plants exhibited increased stomata aperture and stem size in comparison with the cv. Alamo. The most autooplyploid plants were regenerated from switchgrass calli that were treated with 0.04 % colchicine in liquid medium for 13 days. One autopolyploid switchgrass line, VT8-1, was successfully crossed to the octoploid upland cv. Blackwell. The autoployploid and the derived inter-ecotype hybrids were confirmed by in situ hybridization and molecular marker analysis. Therefore, the results of this study show that an autopolyploid, generated by chemically induced chromosome doubling of lowland cv. Alamo, is cross compatible with upland octoploid switchgrass cultivars. The outcome of this study may have significant applications in switchgrass hybrid breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号