首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9952篇
  免费   855篇
  国内免费   9篇
  2022年   57篇
  2021年   109篇
  2020年   52篇
  2019年   74篇
  2018年   101篇
  2017年   93篇
  2016年   158篇
  2015年   265篇
  2014年   346篇
  2013年   468篇
  2012年   556篇
  2011年   567篇
  2010年   390篇
  2009年   364篇
  2008年   567篇
  2007年   554篇
  2006年   537篇
  2005年   556篇
  2004年   516篇
  2003年   540篇
  2002年   485篇
  2001年   129篇
  2000年   135篇
  1999年   188篇
  1998年   177篇
  1997年   140篇
  1996年   124篇
  1995年   109篇
  1994年   108篇
  1993年   98篇
  1992年   118篇
  1991年   112篇
  1990年   112篇
  1989年   105篇
  1988年   109篇
  1987年   64篇
  1986年   73篇
  1985年   86篇
  1984年   109篇
  1983年   87篇
  1982年   108篇
  1981年   95篇
  1980年   84篇
  1979年   64篇
  1978年   73篇
  1977年   75篇
  1976年   59篇
  1975年   67篇
  1974年   59篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Climate change is expected to bring about profound rearrangement of ecological communities by affecting individual species distributions. The resulting communities arise from the idiosyncratic responses of species to future changes, which ultimately relate to both shrinking and expanding species ranges. While spatial patterns of colonisation and extirpation events have received great attention, the identification of specific drivers remains poorly explored. This study aims to investigate the relative contribution of species gain and loss to the turnover of fish assemblages in French rivers under future climate change, and to identify their principal drivers. Future projections of potential habitat suitability in 2080 derived from species distribution models for 40 fish species showed that colonisations and extirpations could play counterbalancing roles in the reshuffling of communities. Simultaneously, these two processes exhibited patchy spatial patterns, segregated along the longitudinal and altitudinal gradients, resulting in dramatic species turnover of ~ 60% of the current composition of species assemblages. Beyond the effect of topographic location, colonisations were found to be driven by temperature seasonality while extirpations were affected by modifications in both thermal and precipitation regimes. These results generate the possibility of developing ecosystem‐based management tools focused on the early identification of areas where particular species may be sensitive to climate changes. Disentangling the drivers of colonisation and extirpation processes provides ready‐to‐use information that may be easily integrated into conservation planning. This information could be used to identify potential hotspots of species gain and loss and to then compare these hotspots with newly favourable areas so as to consider their actual accessibility in order to facilitate future range shifts.  相似文献   
952.
Small variations in signalling pathways have been linked to phenotypic diversity and speciation. In vertebrates, teeth represent a reservoir of adaptive morphological structures that are prone to evolutionary change. Cyprinid fish display an impressive diversity in tooth number, but the signals that generate such diversity are unknown. Here, we show that retinoic acid (RA) availability influences tooth number size in Cyprinids. Heterozygous adult zebrafish heterozygous for the cyp26b1 mutant that encodes an enzyme able to degrade RA possess an extra tooth in the ventral row. Expression analysis of pharyngeal mesenchyme markers such as dlx2a and lhx6 shows lateral, anterior and dorsal expansion of these markers in RA-treated embryos, whereas the expression of the dental epithelium markers dlx2b and dlx3b is unchanged. Our analysis suggests that changes in RA signalling play an important role in the diversification of teeth in Cyprinids. Our work illustrates that through subtle changes in the expression of rate-limiting enzymes, the RA pathway is an active player of tooth evolution in fish.  相似文献   
953.
A multiplexing bead-based platform provides an approach for the development of assays targeting specific analytes for biomonitoring and biosensing applications. Multi-Analyte Profiling (xMAP) assays typically employ a sandwich-type format using antibodies for the capture and detection of analytes of interest, and the system permits the simultaneous quantitation of multiple targets. In this study, an aptamer/antibody assay for the detection of C-reactive protein (CRP) was developed. CRP is an acute phase marker of inflammation whose elevated basal levels are correlated with an increased risk for a number of pathologies. For this assay, an RNA aptamer that binds CRP was conjugated to beads to act as the capture agent. Biotinylated anti-CRP antibody coupled to fluorescently labeled streptavidin was used for quantification of CRP. The detection limit of the CRP assay was 0.4 mg/L in diluted serum. The assay was then used to detect spiked CRP samples in the range of 0.4 to 10 mg/L in diluted serum with acceptable recoveries (extrapolated values of 70–130%), including that of a certified reference material (129% recovery). The successful incorporation of the CRP aptamer into this platform demonstrates that the exploration of other aptamer–target systems could increase the number of analytes measurable using xMAP-type assays.  相似文献   
954.
955.
956.
957.
958.
959.
We present five case studies among articulate (rhynchonelliform) brachiopods, i.e. of Rhynchonellida, Cancellothyridoidea, Terebratuloidea, Dyscolioidea, Laqueoidea, and various terebratulids with modified long‐loops, in an attempt to illustrate and better understand congruence and conflict between morpho‐classification and rDNA‐based molecular clade structure, having been prompted to address these issues by difficulties encountered when describing the newly collected brachiopod, E biscothyris bellonensis gen. et sp. nov. The five studies reveal dramatic conflict in the Rhynchonellida and Terebratuloidea/Dyscolioidea, good congruence in the Cancellothyridoidea and Laqueoidea, and fair congruence (albeit with weak phylogenetic signal) in the long‐looped terebratulids. We suggest that the leading cause of the observed conflict lies in the use of inadequately specific morphological characters and morpho‐classification. Phylogenetic systematic (cladistic) analyses of Rhynchonellida also conflict markedly with the rDNA gene tree, leading us to recognize that such analyses are not only conceptually circular (using morphological characters to assess a morphological classification) but also to propose that they are biased by the act of classification that necessarily precedes the identification of putatively homologous characters; when the prior classification does not reflect evolutionary history, phylogenetic analysis will do likewise. In addition, we propose that the brachiopod community has overlooked the significance of two sources of morphological homoplasy affecting brachiopod systematics: (1) the loss of co‐adapted genomic complexes caused by mass extinctions at the end of the Permian; and (2) the pervasive consequences of developmental integration and constraint resulting from the integrated roles of the outer mantle epithelium in shell deposition and growth that underly the determination of form and the shell‐based classification. © 2015 The Linnean Society of London  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号