首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10061篇
  免费   766篇
  国内免费   10篇
  10837篇
  2022年   57篇
  2021年   116篇
  2020年   57篇
  2019年   79篇
  2018年   101篇
  2017年   91篇
  2016年   160篇
  2015年   263篇
  2014年   341篇
  2013年   466篇
  2012年   554篇
  2011年   566篇
  2010年   388篇
  2009年   362篇
  2008年   563篇
  2007年   555篇
  2006年   538篇
  2005年   555篇
  2004年   515篇
  2003年   540篇
  2002年   485篇
  2001年   129篇
  2000年   135篇
  1999年   187篇
  1998年   169篇
  1997年   138篇
  1996年   123篇
  1995年   108篇
  1994年   109篇
  1993年   98篇
  1992年   115篇
  1991年   114篇
  1990年   114篇
  1989年   105篇
  1988年   109篇
  1987年   66篇
  1986年   75篇
  1985年   88篇
  1984年   109篇
  1983年   92篇
  1982年   109篇
  1981年   98篇
  1980年   84篇
  1979年   63篇
  1978年   73篇
  1977年   76篇
  1976年   61篇
  1975年   64篇
  1974年   59篇
  1973年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   
82.
PCR-mediated screening and labeling of DNA from clones   总被引:1,自引:0,他引:1  
A simplified and economical protocol for DNA library screening and nonradioactive labeling is described. Bacterial clones are lysed in 1% of Triton X-100 and subjected to polymerase chain reaction in the presence of digoxigenin-11-dUTP to screen and simultaneously to label the DNA inserts. Bacteriallysates are stable in storage at −20°C and can be used repeatedly for PCR-mediated labeling. In this protocol, very low concentrations of dNTP, digoxigenin-dUTP, and primers are used in combination with a reduced reaction volume. This will considerably reduce the expense of screening and labeling bacterial clones and facilitate the exchange of DNA probes among laboratories.  相似文献   
83.
84.
85.
Increased leakage of surfactant proteins A and B (SP-A and SP-B) and Clara cell secretory protein (CC16) from the air spaces into the circulation occurs in a range of respiratory conditions. However, circulating levels depend not only on the rate of entry into the circulation, but also on the rate of clearance. In order to clarify the role of the kidney in the clearance of these proteins, serum levels were related to markers of glomerular filtration in 54 non-smoking patients with varying degrees of renal dysfunction, none of whom had respiratory disease or were receiving dialysis at the time of sampling. Serum SP-A was related to SP-B (r=0.53, p<0.001) and to CC16 (r=0.33, p<0.02). Similarly, SP-B was related to CC16 (r=0.39, p<0.004). Stepwise multiple linear regression analysis suggested that serum SP-A and SP-B are influenced by age (~20 and ~25% of variance, respectively), whereas CC16 is determined by renal function and, to a lesser extent, by body weight (~63% of variance in total). We conclude that CC16 is cleared from blood by the renal route, whereas SP-A and SP-B are not. Serum SP-A and SP-B are influenced by age, which we speculate reflects increased damage to the alveolocapillary barrier.  相似文献   
86.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
87.
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader‐Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith‐Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted‐gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively‐slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.  相似文献   
88.
In several Gram-negative pathogens the fur (ferric uptake regulator) gene product controls the expression of many genes involved in iron uptake and virulence. To facilitate the study of iron-regulated gene expression in Bordetella pertussis, we cloned the fur gene from this organism. The B. pertussis fur gene product was 54% identical to the Escherichia coli Fur and complemented two E. coli fur mutants. As with the E. coli fur gene, sequences upstream of the B. pertussis fur were homologous to the consensus Fur-binding site and to the consensus catabolite activator protein binding site.  相似文献   
89.
90.
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection.One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8.We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9).The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (http://jaxmice.jax.org/research/immunology/005557-housing.html).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号