首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   93篇
  1342篇
  2022年   13篇
  2021年   11篇
  2019年   19篇
  2018年   27篇
  2017年   7篇
  2016年   23篇
  2015年   56篇
  2014年   59篇
  2013年   60篇
  2012年   95篇
  2011年   79篇
  2010年   55篇
  2009年   51篇
  2008年   54篇
  2007年   68篇
  2006年   66篇
  2005年   60篇
  2004年   62篇
  2003年   65篇
  2002年   51篇
  2001年   19篇
  2000年   24篇
  1999年   16篇
  1998年   19篇
  1997年   11篇
  1996年   15篇
  1995年   21篇
  1994年   10篇
  1993年   11篇
  1992年   19篇
  1991年   9篇
  1990年   15篇
  1989年   10篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1985年   11篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   7篇
  1980年   7篇
  1979年   6篇
  1977年   8篇
  1976年   5篇
  1973年   8篇
  1969年   5篇
  1940年   4篇
  1939年   4篇
  1936年   4篇
排序方式: 共有1342条查询结果,搜索用时 15 毫秒
11.
The development is described of a new procedure to genetically transform plant species using the male gametophyte as a natural transformation vector. Our system avoids the need for complicated regeneration procedures thus making it broadly applicable. Naked plasmid DNA encoding kanamycin resistance and GUS activity was introduced by particle gun bombardment into mature pollen grains ofNicotiana glutinosa. Bombarded pollen was used for pollinations and the resulting seeds were selected for kanamycin resistance. Two different kanamycin-resistant plants, designated VIP A and VIP B, were obtained in two independent experiments. In VIP A, TR2-driven GUS activity was observed in vascular bundles, trichomes and in a small number of pollen grains. DNA gel blot analysis indicated that the introduced DNA was integrated independently into the genome of VIP A and VIP B. It was shown that male and female gametophyte development and seed set were highly aberrant in both VIP A and VIP B and that the offspring of self- and cross-pollinations did not contain the transgenes. This might be caused by a recombination event during the integration of the naked DNA resulting in a deletion of part of the target chromosome. After meiosis such a deletion is lethal for the gametes. Our observation that the transgenes were detected in DNA isolated from sporophytic tissues but not in DNA from VIP A and VIP B pollen grains is in line with this explanation. Future experiments designed to increase the frequency of transformation and to transfer the transgenes to the offspring are discussed.  相似文献   
12.
The reactions of 4-chloronitrosobenzene with pyruvate decarboxylase and transketolase were investigated by use of a new high-pressure liquid chromatography method to determine any differences between these two enzymes with respect to hydroxamic acid production. In addition to the previously established difference in the type of hydroxamic acid produced by the two enzymes, several new and interesting differences in their reaction with nitrosoaromatics were discovered. Most notable was the finding that pyruvate decarboxylase gave 4-chlorophenylhydroxylamine as the major product from 4-chloronitrosobenzene, while transketolase did not produce any detectable hydroxylamine. A redox mechanism was proposed to account for arylhydroxylamine production by pyruvate decarboxylase. This redox mechanism can also explain hydroxamic acid production by pyruvate decarboxylase; however, a previously proposed nucleophilic reaction mechanism occurring simultaneously could not be totally disproven. Either of the two mechanisms is equally likely for transktolase action in view of the present evidence. Another major difference between these enzymes is that the rate of 4-chloronitrosobenzene conversion was found to be much faster for pyruvate decarboxylase than for transketolase when each enzyme was subjected to its own optimal reaction conditions. Transketolase displayed typical enzyme saturation kinetics with 4-chloronitrosobenzene with a Km of 0.31 mM and Vmax of 0.033 μmol ml?1 min?1 unit?1 relative to 5 mMd-fructose 6-phosphate as sugar substrate. On the other hand, the reaction with pyruvate decarboxylase was first order in 4-chloronitrosobenzene with a combined rate constant of 2.0 min?1 unit?1 ml.  相似文献   
13.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
14.
15.
We have identified a cDNA encoding human peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) with a total length of 3748 bp by screening of a human thyroid carcinoma lambda gt11 library using two heterologous oligonucleotides to conserved regions which derived from frog skin and bovine pituitary PAM sequences. Furthermore we have identified a sequence which differs in a 321 bp deletion. COS cells transfected with a truncated form of this cDNA (lacking the putative carboxyl-terminal transmembrane domain) generated a functional PAM that showed a 20-fold increase of the activity compared to the control and was visualized by immunoblotting.  相似文献   
16.
Abstract: Tyrosine hydroxylase in rat retina is activated in vivo as a consequence of photic stimulation. Tyrosine hydroxylase in crude extracts of dark-adapted retinas is activated in vitro by incubation under conditions that stimulate protein phosphorylation by cyclic AMP-dependent protein kinase. Comparison of the activations of the enzyme by photic stimulation in vivo and protein phosphorylation in vitro demonstrated several similarities. Both treatments decreased the apparent K m of the enzyme for the synthetic pterin cofactor 6MPH4. Both treatments also produced the same change in the relationships of tyrosine hydroxylase activity to assay pH. When retinal extracts containing tyrosine hydroxylase activated either in vivo by photic stimulation or in vitro by protein phosphorylation were incubated at 25°C, the enzyme was inactivated in a time-dependent manner. The inactivation of the enzyme following both activation in vivo and activation in vitro was partially inhibited by sodium pyrophosphate, an inhibitor of phosphoprotein phosphatase. In addition to these similarities, the activation of tyrosine hydroxylase in vivo by photic stimulation was not additive to the activation in vitro by protein phosphorylation. These data indicate that the mechanism for the activation of tyrosine hydroxylase that occurs as a consequence of light-induced increases of neuronal activity is similar to the mechanism for activation of the enzyme in vitro by protein phosphorylation. This observation suggests that the activation of retinal tyrosine hydroxylase in vivo may be mediated by phosphorylation of tyrosine hydroxylase or some effector molecule associated with the enzyme.  相似文献   
17.
Cholesterol depletion alters the apparent affinity of the internal cationic sites and the maximal translocation rate but not the affinity of the external cationic sites of the Na+?K+ pump in human erythrocytes. To test whether these effects were mediated by a direct cholesterol-internal site interaction or by a change in membrane lipid order, the effects of five fluidizing amphiphiles (chlorpromazine, imipramine, benzyl alcohol, sodium oleate and sodium benzenesulphonate) on the kinetic parameters of the Na+?K+ pump were determined. The cholesterol removal and all the agents used induced dose-response decreases in membrane lipid order as measured by fluorescence polarization or ESR. Positive and neutral amphiphiles mimicked the effects of cholesterol removal on the affinity of the internal sites of the pump and to a lesser extent on the maximal translocation rate. Anionic amphiphiles had no effect on internal sites, probably because they distributed preferentially within the outer leaflet on the membrane. These results indicate that cholesterol controls the affinity of the internal sites of the Na+?K+ pump by altering the membrane lipid order. In contrast, neither cholesterol depletion nor the agents used altered the affinity of the external sites of the Na+?K+ pump. This difference in sensitivity to membrane lipid order suggests that internal and external cationic sites, although borne by the same protein, are in different lipid environments.  相似文献   
18.
19.
A comparison of methods used in isolating microsomes and in measuring microsomal cytochrome P-450 demonstrated that separation following protoplast lysis gave the best results. By this latter technique a high amount of cytochrome P-450 (0.2–0.3 nmol/mg) was recovered but cytochrome P-420, considered as the denatured form, was absent.The alkanes specifically induce cytochromes P-450 and b5 localized on the microsomes. The denaturation in vivo of cytochrome P-450 into cytochrome P-420 even occurs during storage at 1 °C. This degradation is increased during preparation of subcellular fractions if no preventive measures are taken.  相似文献   
20.
TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL.   总被引:39,自引:1,他引:39       下载免费PDF全文
TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号