首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3439篇
  免费   338篇
  2022年   23篇
  2021年   34篇
  2020年   21篇
  2019年   32篇
  2018年   52篇
  2017年   41篇
  2016年   73篇
  2015年   121篇
  2014年   128篇
  2013年   167篇
  2012年   202篇
  2011年   209篇
  2010年   142篇
  2009年   127篇
  2008年   157篇
  2007年   183篇
  2006年   146篇
  2005年   139篇
  2004年   141篇
  2003年   154篇
  2002年   121篇
  2001年   87篇
  2000年   112篇
  1999年   94篇
  1998年   47篇
  1997年   52篇
  1996年   48篇
  1995年   56篇
  1994年   47篇
  1993年   46篇
  1992年   73篇
  1991年   62篇
  1990年   67篇
  1989年   54篇
  1988年   35篇
  1987年   42篇
  1986年   50篇
  1985年   38篇
  1984年   23篇
  1983年   22篇
  1982年   29篇
  1981年   24篇
  1980年   18篇
  1979年   27篇
  1978年   17篇
  1977年   18篇
  1976年   23篇
  1975年   17篇
  1973年   22篇
  1972年   24篇
排序方式: 共有3777条查询结果,搜索用时 15 毫秒
971.
972.
Precise microwave heating has emerged as a valuable method to aid solid‐phase peptide synthesis (SPPS). New methods and reliable protocols, as well as their embodiment in automated instruments, are required to fully use this potential. Here we describe a new automated robotic instrument for SPPS with microwave heating, report protocols for its reliable use and report the application to the synthesis of long sequences, including the β‐amyloid 1‐42 peptide. The instrument is built around a valve‐free robot originally developed for parallel peptide synthesis, where the robotic arm transports reagents instead of pumping reagents via valves. This is the first example of an ‘X‐Y’ robotic microwave‐assisted synthesizer developed for the assembly of long peptides. Although the instrument maintains its capability for parallel synthesis at room temperature, in this paper, we focus on sequential peptide synthesis with microwave heating. With this valve‐free instrument and the protocols developed for its use, fast and efficient syntheses of long and difficult peptide sequences were achieved. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
973.

Background  

The fingerprint of a molecule is a bitstring based on its structure, constructed such that structurally similar molecules will have similar fingerprints. Molecular fingerprints can be used in an initial phase of drug development for identifying novel drug candidates by screening large databases for molecules with fingerprints similar to a query fingerprint.  相似文献   
974.
Previous work in Arabidopsis showed that after an ancient tetraploidy event, genes were preferentially removed from one of the two homeologs, a process known as fractionation. The mechanism of fractionation is unknown. We sought to determine whether such preferential, or biased, fractionation exists in maize and, if so, whether a specific mechanism could be implicated in this process. We studied the process of fractionation using two recently sequenced grass species: sorghum and maize. The maize lineage has experienced a tetraploidy since its divergence from sorghum approximately 12 million years ago, and fragments of many knocked-out genes retain enough sequence similarity to be easily identifiable. Using sorghum exons as the query sequence, we studied the fate of both orthologous genes in maize following the maize tetraploidy. We show that genes are predominantly lost, not relocated, and that single-gene loss by deletion is the rule. Based on comparisons with orthologous sorghum and rice genes, we also infer that the sequences present before the deletion events were flanked by short direct repeats, a signature of intra-chromosomal recombination. Evidence of this deletion mechanism is found 2.3 times more frequently on one of the maize homeologs, consistent with earlier observations of biased fractionation. The over-fractionated homeolog is also a greater than 3-fold better target for transposon removal, but does not have an observably higher synonymous base substitution rate, nor could we find differentially placed methylation domains. We conclude that fractionation is indeed biased in maize and that intra-chromosomal or possibly a similar illegitimate recombination is the primary mechanism by which fractionation occurs. The mechanism of intra-chromosomal recombination explains the observed bias in both gene and transposon loss in the maize lineage. The existence of fractionation bias demonstrates that the frequency of deletion is modulated. Among the evolutionary benefits of this deletion/fractionation mechanism is bulk DNA removal and the generation of novel combinations of regulatory sequences and coding regions.  相似文献   
975.
976.
Highlights? Smad-interacting protein 1 (SIP1) regulates hESC differentiation ? SIP1 upregulation promotes neuroectodermal differentiation ? SIP1 inhibits mesendodermal and endodermal differentiation ? SMAD2/3 and NANOG/OCT4/SOX2 cooperatively regulate SIP1 expression  相似文献   
977.

Background

Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.

Methodology/Principal Findings

To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.

Conclusions/Significance

These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate brainstem neural circuits control postural and cranial muscle phasic activity during REMS.  相似文献   
978.
Aliivibrio salmonicida causes "cold-water vibriosis" (or "Hitra disease") in fish, including marine-reared Atlantic salmon. During development of the disease the bacterium will encounter macrophages with antibacterial activities such as production of damaging reactive oxygen species (ROS). To defend itself the bacterium will presumably start producing detoxifying enzymes, reducing agents, and proteins involved in DNA and protein repair systems. Even though responses to oxidative stress are well studied for a few model bacteria, little work has been done in general to explain how important groups of pathogens, like members of the Vibrionaceae family, can survive at high levels of ROS. We have used bioinformatic tools and microarray to study how A. salmonicida responds to hydrogen peroxide (H(2)O(2)). First, we used the recently published genome sequence to predict potential binding sites for OxyR (H(2)O(2) response regulator). The computer-based search identified OxyR sites associated with 20 single genes and 8 operons, and these predictions were compared to experimental data from Northern blot analysis and microarray analysis. In general, OxyR binding site predictions and experimental results are in agreement. Up- and down regulated genes are distributed among all functional gene categories, but a striking number of ≥2 fold up regulated genes encode proteins involved in detoxification and DNA repair, are part of reduction systems, or are involved in carbon metabolism and regeneration of NADPH. Our predictions and -omics data corroborates well with findings from other model bacteria, but also suggest species-specific gene regulation.  相似文献   
979.
The Scrg1 gene was initially discovered as one of the genes upregulated in transmissible spongiform encephalopathies (TSE). Scrg1 encodes a highly conserved, cysteine-rich protein expressed principally in the central nervous system. The protein is targeted to the Golgi apparatus and large dense-core vesicles/secretory granules in neurons. We have recently shown that the Scrg1 protein is widely induced in neurons of scrapie-infected mice, suggesting that Scrg1 is involved in the host response to stress and/or the death of neurons. At the ultrastructural level, Scrg1 is associated with dictyosomes of the Golgi apparatus and autophagic vacuoles of degenerative neurons. It is well known that apoptosis plays a major role in the events leading to neuronal cell death in TSE. However, autophagy was identified in experimentally induced scrapie a long time ago and was recently reevaluated as a possible cell death program in prion diseases. The consistent association of Scrg1 with autophagic structures typical of scrapie is in agreement with the recruitment of Golgi-specific proteins in this degradation process and we suggest that Scrg1 might be used as a specific probe to identify neuronal autophagy in TSE.  相似文献   
980.
A straightforward analytical method for determination of 3-benzylidene camphor (3-BC) in rat adipose tissue, brain, liver, muscle, plasma and testis following topical application was developed and validated. Three exposure levels (60, 180 and 540 mg kg(-1) day(-1)) were tested for 65 days in male Sprague-Dawley rats (24 days postnatal). Sample preparation involving homogenization and n-heptane or methanol extraction of the tissue was applied before injection into the LC-ESI-MS-MS system. The response was linear from 2 to 100 microg l(-1) for the qualifier and the quantifier MRM transitions (R(2) (quantifier) > 0.994). Detection limit of the method corresponded to 0.005 microg g(-1) tissue and 12.5 microg l(-1) plasma, respectively. Recovery was determined for all tissues (adipose tissue: 40%; all other tissues: 80-100%) at three individual levels. 3-(4-Methyl benzylidene camphor) (4-MBC) was used throughout the study as internal standard. 3-Benzylidene camphor was detected in all tissues at all exposure levels at concentrations between 0.05 microg g(-1) (liver) and 36 microg g(-1) (adipose tissue) and in plasma at 16-89 microg l(-1). The method allowed for the quantification of 3-benzylidene camphor in all tested tissues following topical application. Furthermore, it was shown that 3-benzylidene camphor can be found in various tissues in the rat following topical application. These findings may suggest that following use of 3-benzylidene camphor containing sunscreen, similar disposition and distribution may occur in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号