首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3439篇
  免费   338篇
  2022年   23篇
  2021年   34篇
  2020年   21篇
  2019年   32篇
  2018年   52篇
  2017年   41篇
  2016年   73篇
  2015年   121篇
  2014年   128篇
  2013年   167篇
  2012年   202篇
  2011年   209篇
  2010年   142篇
  2009年   127篇
  2008年   157篇
  2007年   183篇
  2006年   146篇
  2005年   139篇
  2004年   141篇
  2003年   154篇
  2002年   121篇
  2001年   87篇
  2000年   112篇
  1999年   94篇
  1998年   47篇
  1997年   52篇
  1996年   48篇
  1995年   56篇
  1994年   47篇
  1993年   46篇
  1992年   73篇
  1991年   62篇
  1990年   67篇
  1989年   54篇
  1988年   35篇
  1987年   42篇
  1986年   50篇
  1985年   38篇
  1984年   23篇
  1983年   22篇
  1982年   29篇
  1981年   24篇
  1980年   18篇
  1979年   27篇
  1978年   17篇
  1977年   18篇
  1976年   23篇
  1975年   17篇
  1973年   22篇
  1972年   24篇
排序方式: 共有3777条查询结果,搜索用时 125 毫秒
961.
Four out of the 22 aminoacyl‐tRNAs (aa‐tRNAs) are systematically or alternatively synthesized by an indirect, two‐step route requiring an initial mischarging of the tRNA followed by tRNA‐dependent conversion of the non‐cognate amino acid. During tRNA‐dependent asparagine formation, tRNAAsn promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa‐tRNA from non‐discriminating aspartyl‐tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 Å resolution reveals a particle formed by two GatCABs, two dimeric ND‐AspRSs and four tRNAsAsn molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl‐tRNAAsn without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer‐ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.  相似文献   
962.
Background aimsHeart failure therapy with human embryonic stem cell (hESC)-derived cardiomyocytes (hCM) has been limited by the low rate of spontaneous hCM differentiation. As others have shown that p38 mitogen-activated protein kinase (p38MAPK) directs neurogenesis from mouse embryonic stem cells, we investigated whether the p38MAPK inhibitor, SB203580, might influence hCM differentiation.MethodsWe treated differentiating hESC with SB203580 at specific time-points, and used flow cytometry, immunocytochemistry, quantitative real-time (RT)–polymerase chain reaction (PCR), teratoma formation and transmission electron microscopy to evaluate cardiomyocyte formation.ResultsWe observed that the addition of inhibitor resulted in 2.1-fold enrichment of spontaneously beating human embryoid bodies (hEB) at 21 days of differentiation, and that 25% of treated cells expressed cardiac-specific α-myosin heavy chain. This effect was dependent on the stage of differentiation at which the inhibitor was introduced. Immunostaining and teratoma formation assays demonstrated that the inhibitor did not affect hESC pluripotency; however, treated hESC gave rise to hCM exhibiting increased expression of sarcomeric proteins, including cardiac troponin T, myosin light chain and α-myosin heavy chain. This was consistent with significantly increased numbers of myofibrillar bundles and the appearance of nascent Z-bodies at earlier time-points in treated hCM. Treated hEB also demonstrated a normal karyotype by array comparative genomic hybridization and viability in vivo following injection into mouse myocardium.ConclusionsThese studies demonstrate that p38MAPK inhibition accelerates directed hCM differentiation from hESC, and that this effect is developmental stage-specific. The use of this inhibitor should improve our ability to generate hESC-derived hCM for cell-based therapy.  相似文献   
963.

Background  

Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.  相似文献   
964.

Background  

In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR) method for ex vivo angiography and to compare the findings with computed tomography (CT). To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle.  相似文献   
965.
966.
Adenosine 5'-triphosphate is a universal molecule in all living cells, where it functions in bioenergetics and cell signaling. To understand how the concentration of ATP is regulated by cell metabolism and in turn how it regulates the activities of enzymes in the cell it would be beneficial if we could measure ATP concentration in the intact cell in real time. Using a novel aptamer-based ATP nanosensor, which can readily monitor intracellular ATP in eukaryotic cells with a time resolution of seconds, we have performed the first on-line measurements of the intracellular concentration of ATP in the yeast Saccharomyces cerevisiae. These ATP measurements show that the ATP concentration in the yeast cell is not stationary. In addition to an oscillating ATP concentration, we also observe that the concentration is high in the starved cells and starts to decrease when glycolysis is induced. The decrease in ATP concentration is shown to be caused by the activity of membrane-bound ATPases such as the mitochondrial F(0)F(1) ATPase-hydrolyzing ATP and the plasma membrane ATPase (PMA1). The activity of these two ATPases are under strict control by the glucose concentration in the cell. Finally, the measurements of intracellular ATP suggest that 2-deoxyglucose (2-DG) may have more complex function than just a catabolic block. Surprisingly, addition of 2-DG induces only a moderate decline in ATP. Furthermore, our results suggest that 2-DG may inhibit the activation of PMA1 after addition of glucose.  相似文献   
967.
968.
We showed that the production of tumor necrosis factor (TNF) α by macrophages in response to Toxoplasma gondii glycosylphosphatidylinositols (GPIs) requires the expression of both Toll-like receptors TLR2 and TLR4, but not of their co-receptor CD14. Galectin-3 is a β-galactoside-binding protein with immune-regulatory effects, which associates with TLR2. We demonstrate here by using the surface plasmon resonance method that the GPIs of T. gondii bind to human galectin-3 with strong affinity and in a dose-dependent manner. The use of a synthetic glycan and of the lipid moiety cleaved from the GPIs shows that both parts are involved in the interaction with galectin-3. GPIs of T. gondii also bind to galectin-1 but with a lower affinity and only through the lipid moiety. At the cellular level, the production of TNF-α induced by T. gondii GPIs in macrophages depends on the expression of galectin-3 but not of galectin-1. This study is the first identification of a galectin-3 ligand of T. gondii origin, and galectin-3 might be a co-receptor presenting the GPIs to the TLRs on macrophages.  相似文献   
969.
A new HPLC method was developed to separate linear from β(1–6)-branched β(1–3)-glucooligosaccharides. This methodology has permitted the isolation of the first fungal β(1–6)/β(1–3)-glucan branching transglycosidase using a cell wall autolysate of Aspergillus fumigatus (Af). The encoding gene, AfBGT2 is an ortholog of AfBGT1, another transglycosidase of A. fumigatus previously analyzed (Mouyna, I., Hartland, R. P., Fontaine, T., Diaquin, M., Simenel, C., Delepierre, M., Henrissat, B., and Latgé, J. P. (1998) Microbiology 144, 3171–3180). Both enzymes release laminaribiose from the reducing end of a β(1–3)-linked oligosaccharide and transfer the remaining chain to another molecule of the original substrate. The AfBgt1p transfer occurs at C-6 of the non-reducing end group of the acceptor, creating a kinked β(1–3;1–6) linear molecule. The AfBgt2p transfer takes place at the C-6 of an internal group of the acceptor, resulting in a β(1–3)-linked product with a β(1–6)-linked side branch. The single Afbgt2 mutant and the double Afbgt1/Afbgt2 mutant in A. fumigatus did not display any cell wall phenotype showing that these activities were not responsible for the construction of the branched β(1–3)-glucans of the cell wall.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号